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Two- and Three-Level Superfluoresence Calculations

and an algorithm for Optical Bistability

F.P. Mattar

Abstract

I. Mthodology

- omputational methodologies were developed to treat rigorously (i)

transverse boundary in an inverted (amplifying) media; (ii) to treat quantum

fluctuations in an initial boundary conditions in the light-matter interactions

problem; (iii) construct a two-laser three-level code to study light control

by light effect; (iv) construction of a data base that (a) would manage the

production of different types of laser calculations: cylindrical, cylindrical

with atomic frequency broadening, cartesian geometry; all of the above with

quantum mechanical initiation), (b) allow parametric comparison within the

same type of calculations, by establishing a unifying protocol of software

storage, of the various refinements of the model could be contrasted among

themselves and with experiment; (v) construct an algorithm for counterbeam

. transient studies for optical bistability and optical oscillator studies.

" II. Physics

A. Transverse effects were shown to be inherent to the problem of

superfluorescence. By refining the propagational model advocated by Feld,

we were able to simulate correctly Gibbs, et al's Cs data for the first time.

The mean field approach was shown not to directly relevant to the Cs data.

The interplay of quantum fluctuations and transverse dynamic effects lead to

Fresnel variation of the time delay statistic in conformity with experiments.

I
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B. The previously studied as totally independent effects super-

radiance and swept-gain superradiance were shown to be strongly related to

and to evolve assymptotically from the first one to the second one. Output

energy stabilization was obtained by balancing the gain (from the inverted

medium) with the dynamic diffraction loss (from the finiteness of the beam).

C. The Study of three-level systems exhibited that injected coherent-

pump initial characteristic (such as on-axis area, temporal and radial width

and shape) injected at one frequency can have significant deterministic ef-

fects on the evolution of the superfluorescence at another frequency and its

pulse delay time, peak intensity, temporal width and shape. The importance

of Resonant Coherent Roman processes was clearly demonstrated in an

example where the evolving superfluorescence pulse temporal width T is

much less than the reshaped coherent pump width T eventhough the two

pulses temporarily overlap (i.e., the superfluorescence process gets started

late and terminates early with respect to the pump time duration). The

results of the three-level calculations are in quantitative agreement with

observations in CO2 pumped CH3 F.

4".
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1 The International Conference on laser 80, New Orleans, Dec. 30 (2
papers) (proceedings published by STS, MacLean, Virginia 1982).

2- The International Conferences on Excited states and Multiresonant
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the Instrument Society of America, Pittsburgh, Pennsylvania.

6 - The International Conference on Optical Bistability Proceedings ed. by
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Nonlinear Light Pulse Evolution; Optical Bistability (1981) Edited by
Charles M. Bowden, Mikael Ciftan and Herman R. Robt, Pub. Plenum,
NY p. 503,555.

11. Transverse and Phase Effects in Light Control By Light: Pump
Dynamics in Superfluorescence; Proceedings of the International
Conference on Lasers '81, December 14-18, 1981.

12. A Production System for the Management of a Results Functions Bank
and a Special Application: The Laser Project ; Published in the pro-
ceedings of the International Conference on Laser '81, ed. by C.B.
Collins (STS, MacLean Virginia 1982) pp. 1055-1115 (with M. Cormier,
Y. Claude and P. Cadieux).

13. Light Control by Light with an Example in Coherent Pump Dynamics,
Propagation, Transverse & Diffraction Effects in Three-Level Super-
fluorescence; IEEE International Quantum Electronics Conference,
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Verlag (with C.M. Bowden).
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16. Quantum Fluctuations and Transverse Effects in Superfluorescence;
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TRANSVERSE EFFECTS IN BURNHAM-CHIAO RINGING AND SUPERFLUORESCENCE

F.P. attar*
Polytechnic Institute of New York

Brooklyn, New York 11201

H.M. Gibbs
Bell Labs

Murray Hill, NJ 07974

and
Optical Sciences Centert
University of Arizona
Tucson, AZ 85721

ABSTRACT

Dynamic diffraction coupling is examined in superfluorescence experiments using semi-classical model with
initial tipping angle. Effects of Fresnel number and of the radial dependence of initial polarization and
atom density on ringing, delay, and intensity are reported.

Semi-classical Treatment of Superfluorescence and Propagation Effects

* Analytic solutionsI of superfluorescence pulse shapes have been obtained only by neglecting propagation
-" effects. Such solutions are somewhat academic in that all experiments so far use extended samples for which

propagation effects play a major role. Furthermore, a sample of volume less than A3 would experience 2dipole-
dipole dephasing which would destroy SF or at least greatly modify it from the analytic descriptions.

Propagation effects can be taken into account fully in pulse propagation problems by numerigally inte-
grating coupled Maxwell-Bloch equations. Such seri-classical calculations have been carried out and found
in good agreement with self-induced transparency experiments~c ,4 many years ago.

An identical semi-classical approach was taken in the first simulation of SF.5  SF begins by spontaneous
". emission which requires a quantized field description. In a semi-classical model a purely inverted medium
"" does not radiate in the absence of an external electromagnetic field. Consequently, in order to apply the

semi-classical formalism to SF, the quantum initiation process was swept into a single initial polarization
tipping angle eo or into a randomly fluctuating initial polarization.

5 More recent work has studied the
quantum fluctuations both theoretically6 and experimentally. 7

The need to includg propagation effects in SF simulations was first shown by Skribanowitz, Herman,
%facGillivray, and Feld. Their SF data in HF often contained pulses with substantial ringing in sharp contrast

*- with the sech2 symmetrical single-pulse output predicted by the propagationless analytic solutions.
Skribanowitz et al. were influenced strongly by the work of Burnham and Chiao( 3e) who predicted ringing when
small area pulses propagate through absorbers. In fact the Burnham-Chiao or McCall( 3d) simulations for w-eo
area pulse propagation in absorbers or for 6o area pulses in inverted media are identical to all of the early
SF simulations. Namely, the calculations were uniform-plane-wave one-way treatments. No transverse variables
were included. I.e., the following equations were numerically integrated:

(o -W)v-ulT2 ' (1)
(o 2

- (w - )u - v/T2' -wKE (2)

= -(w + 1)/T + vWE C3)

aE + I aE 2_wnpv (4)
az cat c

where u,v,w are the Bloch components of the pseudo polarization vector, E is the slowly varying envelope of
the electromagnetic field, n is the density of atoms with electric dipole transition moment p, K = 2p/, and
T ' and T1 are the coherence and energy relaxation times, respectively.

*Work jointly supported by the Research Corporation, the International Division of Mobil, the University of
Montreal, and the U.S. Army Research Office (Durham).

tPresent address.
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4
Such simulations, which are just solutions of the sine-Gordon equation when relaxation is negligible,

predict very strong ringing where each ring can be S0% as intense as the preceeding ring. Ringing that
pronounced has never been observed. MacGillivray et al. S introduced a linear loss term -KE to the right
side of Eq. (4) to account for linear diffraction losses. A value KL = 2.5 reduced the ringing to that

• "observed, but the corresponding Fresnel number is 0.08 compared with their experimental value of order unity.
At any rate their simulations showed clearly that the polarization and electric field vary appreciably along
the sample, i.e., propagation effects are very important and a mean-field approximation is unjustified.

Initiation by Quantum Fluctuations

Sa
The Cs experiment provided much more quantitative data on pulse shapes and densities for SF under near-

*'  ideal conditions. Attempts to simulate those data by uniform-plane-wave simulations were made by Gibbs &
Vrehen8 b and by Saunders, Bullough, and collaborators. 9 They found much more pronounced ringing and longer
(as much as twice) delays than observed. Relaxation, inhomogeneous dephasing, and diffraction were too weak
in the Cs case to account for these discrepeancies. At that time the proper value of eo was under discussion.
It was found that large e.'s of order 1/'uN did improve the fits substantially but not completely. (The
shape factorlb u is typically 10-5.) It is now generally accepted from theoretical calculations and a small
area injection experimentIO that 6 Z 2/ FN. That formula yields 6o Z 10-4 for the Cs experiment, resulting
in far too much ringing and too long delays. But determining the appropriate 0 was very significant; by

" fixing that parameter, the need for other explanations of the ringing and delay-time discrepancies was
underscored. And the likelihood that two-way effects were very impprtan was greatly reduced because compli-
cated two-way computations by Saunders, Bullough, Hassan, and Feuillade as well as MacGillivray and
Feldli revealed insignificant reduction of ringing by two-way competition for 0 = 10-4. Only for very large
eo, of order 0.1, were two-way effects found to appreciably reduce ringing.

Those quantized-field studies of 60 led naturally to another significant numerical calculation, namely
a study of fluctuations in the output pulse shape as a result of the quantum nature of SF initiation. A
distribution of initial e0 's consistent with the quantized-field results was used to initiate the usual
coupled Maxwell-Bloch simulations. The resulting distribution12 of delay times is in good agreement with

*those observed by Vrehen 7 and with an analytic expression for the variance.
6a

These fluctuation results also reduced the discrepancy between experimental and simulation densities
for the same delay. It became clear that the data presented in Ref. 8,which simulations were trying to
reproduce, were selected for approximately minimum delay at a given denfsty. It was estimated that the
average delay was about 30% longer than the pulses presented in Ref. 8. The density in the simulation
would then need to be 1.3 times higher, so that a 2X discrepancy is reduced to less than the +60% quoted
uncertainty in the density.

Transverse Effects

At this stage of the numerical simulations the primary discrepancy between the Cs data and the one-way
. uniform-plane-wave computations with 60 = 21r lay in pulse shapes. MacGillivray and Feld noted quite some

time ago, that a Gaussian inversion profile results in a distribution of delay times and that a Gaussian
average of plane-wave solutions predicts a highly asymmetric output pulse. The ringing is largely removed,
but the averaging of the large ringing results in a composite output with a tail much longer than observed.

Encouraged by the importance of dynamic transverse effects in self-induced transparency numerical
simulations1 3 and actual experiments,14 we have allowed one transverse degree of freedom in SF simulations.
One must add to the righthand side of Eq. (4),

1 2 E (5)
4FL t

where 72 1 0 ), = r/rp, rp is the radius of the initial inversion density at half maximum, L is
t P 2

the sample length, and F = ir /XL is the Fresnel number. E is, of course, complex so that phase variations
p Ic

introduced by diffraction can be included consistently. Thus, neither the mean-field approximation no the
substitution of a loss term for diffraction coupling is used. Instead, self-consistent numerical methods

1 5

are adopted which take into account fully both propagation and transverse (both spatial profile and Laplacian
coupling) effects. Thus our model possesses a degree of realism long hoped for. 17

These transverse simulations are in much better agreement with the Cs data as shown in Fie. 1. Each
simulation density n was adjusted to roughly reproduce the observed delay using 

6o = 2 __ r. The inver-
o 2/F 2 2 ;7,rL.

sion density radial dependence was no(r) = no exp[-(ln2)r 2/r 2. These transverse simulations fit the data

much better than the Gaussian average of plane-wave solutions for at least two reasons. First, the diffrac-
* tion coupling between the minimum-delay center portion of the excited cylinder and the outer cylindrical

"shells" causes the delay times of the latter to be reduced. This allows more of the cylinder to emit at the
same time; the overall delay is lengthened slightly, but the asymmetry is also reduced. See Fig. 2. Second,
relaxation included in Fig. 1 was found to reduce the asymmetry more than was anticipated from their rather
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(C) I

theory theory -
n: =30x0Ocm3 n:=a t .9 x I0'O/cm3

experient eperiment-

n: - 9xiOC3n

0 ()theory -()\ theory -
W JC a n18xj10/Cm3  n=.85 1/Cm3

9, 6 I .37Xt0-4  1::.96X10- 4

I experiment \experiment -
0nO,.=7.6x%0 10/cm3 n 3.-j1 I' 0 /Cm3
Z

1-i) theory-
~'/n-12x 100/cm 3

0- 6.0l.0 X0 4 0  0 10 2_0 30 40

TIME (ns) TIME (ns)

Figure 1. Theoretical fits to Cs data of Ref. 8a. The two experimental curves in (a) indicate typical
shot-to-shot variations. The I-D curve in (b) is the fit of Ref. lob to the one-dimensional
theory. F - ir2/AL =1, L = 2 cm, 'F1  70 ns, T2'- 80 n = 

2.931p, To SS55 ns,

6uniform Gausgian, inversion n (r) =no expt-tn2(r/r )TJ

0.69
40- 1-- .0

3-- 0 4s

pou -- .0

to-
20 POUT

to 5-

I.O_ 2 3 4 5 0 I 2 3 4 5

Figure 2. Total energy coherently emitted per unit atom in arbitrary units,.as a functio0 of ti~me with
Fresnel number as the labelling parameter. 00 = 10-f or all radii, TR = dr/3N0  L =0.046 ns,
and L =5.2~ cm. (a) Uniformly inverted cylinder: inversion constant Out to o0 Rnd zero beyond
with F rplo/XL. The output is accepted only out to Po. (b) Gaussian inversion cylinder with
F and no(r)J defined as in Fig. 1.
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long times of T = 70ns and T,' = 8ns. Although there is still more of a tail in the simulations than
the data, the akreement is rather good and far better than the uniform-plane-wave attempts.

The ratio of the simulation density to the experimental density ranges from 1.63 to 2.85 in Fig. 1. It
was mentioned before that the average delays for the experimental densities were about 1.3 times longer than
the selected pulses. One would then expect to use 1.3 times higher simulation densities in that case
reducing the ratio to 1.25 to 2.2. The quantum calculations6 actually yield eo = (2//N- ) (Zn(21TN)I/ 8)l/2 ,
not just 2/Vp, which is a 9% correction, reducing the ratio to 1.14 to 2.0. Since the assigned experimental
uncertainties are +60%, -40% the agreement is fairly good. If one chooses 00 = 6/44, which agreed better with

- the small injection experiment, the ratio ranges from 1.01 to 1.78, in still better agreement.

Burnham-Chiao Ringing

Fig. 3 illustrates that this model of SF predicts appreciable ringing if one observes the output with
a detector much smaller than the output diameter. This suggests that the single-pulse symmetric Cs SF
pulses have substructure in space and time which retains the strong ringing predicted by the uniform-plane-
wave approach. The extended cylinder of unit Fresnel number F does not emit its energy in one single cooper-
ative superfluorescence burst after all. In fact, simulations reveal that ringing is reduced by decreasing

* F. This allows emission from the cylinder's axis to diffract to the outer cylindrical shells in a shorter
distance. Consequently, F somewhat less than one may be better than F equal to one for single pulse emission,
contrary to the usual arguments.

Z

-. ri

h I I I i i

0 50 100 150
T/ R

b

- Figure 3. Energy as a function of (a) transverse coordinate o = r/r and time and (b) only time after
integration over p. Notice that strong ringing is predicted for a small-aperture detector in
the center of the beam although very little ringing is in evidence after radial averaging.

-00 = 2.38 X 10-4 exp(-p 2/2), TR = 4.9 ns, F = 1, L = 22.4 cm, and transverse Gaussian inversion
profile. As F is decreased, ringing is washed out into smaller and smaller p.

0

I.
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Future Work

It must be emphasized that this transverse simulation of SF contains approximations; strictly speaking
it is a solution of the propagation of a small-area uniform-plane-wave coherent pulse through an inverted
medium with a Gaussian transverse inversion profile. Experiments could be performed under such conditions
and our semi-classical description should be complete. The transverse SF simulation should be extended to
explore more thoroughly the quantum and three-dimensional aspects of SF. Quantum fluctuations in the initia-
tion should be included in the transverse calculation to examine the fluctuations in output shape and delay.
The initiation should not be inserted as a homogeneous tipping of all the individual polarization vectors
phased to emit a plane wave in the forward direction. Ideally the initiation and calculation should allow
three spatial degrees of freedom so that transverse modes can compete. The strong ringing on axis, as
predicted above, may not persist with three-dimensional fluctuations. Two transverse effects previously
observed in Cs might merge. It was found at high densities, approximately for sample lengths longer than
the Arecchi-Courtensig coherence length, that SF from a Fresnel-one sample fluctuates and shows little or no
correlation between the pulse shapes at two different transverse positions. 19 And large Fresnel-number SP
is emitted over the full geometrical angle with only small fluctuations. 19
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Abstract

We discuss coherent propagation effects in vapors of polyatomic molecules under conditions of'sultipl
photon excitation, including the generation of new frequencies and the development of transverse effects
such as self-focusing and seLf-defocusing. We give a discussion of the adiabatic-following bpprouimatibn
for multilevel systems, and discuss the generation of new frequencies'in this limit as well as in the limi

a 'of an instantaneously-switched-o pulse.

Introduction

The multiple-photon excitation of polyatomic molecules has attracted much attention since-the demonst
tion of isopotic selectivity in the multiple-photon dissociation of KCI I1] and SF6, 12) particularly
after these processes were shown to occur in the absence of collisions ?31. in the ensuing debate 141 as
to the origins of the multiple-photon excitation and dissociation of polyatomic molecules, little has bee.
said about the possible influence of coherent propagation effects and other collective processes upon the
interpretation of the experimental meanurements of energy absorption that have been carried out to date.
It has recently been suggest"ed 51 that the generation of near-resonant sidbeands as the result of propags
in a multilevel molecular gaseous medium may be responsible for a number of effects that have previously
been ascribed to a hypothesized rapid intramolecular relaxation of energy, such as the observed pumping of

- nearly all rotational states by laser pulses ol modest intensity [6). Also, the recent discovery of stro
self-focusing in SF. under conditions of collisionless multiple-photon excitation calls into question most
of the measurements of energy deposition that have been reported in the literature to date (7). Under
-these circumstances we have chosen to review the current status of propagation calculations in multilevel
systems, both from the point of view of generation ot new frequencies and from the point of view of trans-

" verse effects such as self-focusing and self-defocusing. Following a brief introduction to the current
understanding of the energy levels of polyatomic molecules such as Sy6, we summarize the derivation of the
Schridinger equation for multilevel systems and the propagation equation for the optical electric field
under the slowly-varying-amplitude-and-phase approximation (SVAPA). We then discuss the generation of new
frequencies and transverse effects in two limits: the lihjt of a rapidly-switchedon pulse and the Limit of
an adiabatically-switched-on pulse. In the limit of a rapidly-switched-on pulse, sidebands are generated
that are nearly resonant with all the molecular radiative transitions that are accessible from the initial
molecular state 15.81; the sideband amplitude saturates at a constani value after a finite propagation
distance. In the limit ol an adiabatically-switched-on pulse, a sideband spectrum is generated by the

* !process of self-phase modulation 191. Finally, we present numerical results concerning the generation of
new frequencies by a system that models some of the qualitative characteristics of SF6 irradiated by a
rapidly-switched-on pulse.

Practical applications where coherent propagation effects in multilevel molecular systems may be
*_ ,important include laser chemistry and isotope separation, and the propagation of powerful laser beams

through the earth's atmosphere. In laser-induced chemistry and isotope separation the generation of addi
Lional freq,tencies, whether for rapidly-swiLched-on pulses or adiabatically-switched-on pulses, will resu
iii a reduction of isotopic or cbemical-bond selectivity and an overall increase ot multiple-photon excita
Transverse effects such. as self-tocusing or selt-detocusing will alter the volume illuminated by a laser

-•during multiple-photon absorpLion experiments and will thereby affect the calculation of the number of
S-"laser photons absorsed per molecule. On a practical scale, self-tocusing may deline a fundamental limit

ithe upLical path length-that can be utilized in industrial laser chemistry or isotope separation, and may
thereby limit the useful through-put of an industrial plant. Yor the problem of atmospheric propagation,

Research at UTO partially smaported by the National Science Foundation under Gratit No. CHE-8017324

270
t



the generation of additional frequencies will result in an increase of absorption and hence a reduction of
transmission tor pulsed laser beams with respect to that calculated for low-intensity CW beams. Self-focusing

* nd self-detocusing will, of course, have an important effect on beam quality and the ultimate achievable
far-field irradiance.

Energy Levels of Polvatomic Molecules

From the point of view of calculations of coherent propagation, the dominant feature of the energy

* levels of polyatomic molecules is the splitting of these levels by vibrational and rotational effects 141.
* Originally it was supposed that multiple-photon excitation of polyatomic molecules would he very difficult

owing to the general tendency of the spacing of the vibrational energy levels of an anharmonic oscillator

to decrease with increasing excitation energy. However, early force-field studies of polyatomic molecules
such as SF that possess degenerate modes of vibration indicated that the splitting of the degenerate
excited vigrational levels of these molecules by vibrational anharmonic effects could provide an important
compensation for the anharmonicity of the vibration, and thereby increase the probability for finding a

* nearly resonant ladder of states for multiple-photon excitation 1101. These early calculations have recently
* been strikingly confirmed by experiment 1ll). Rotational compensation of anharmonicity--in other words,

the compensation of vibrational anharmonicity by a change of rotational energy--has also been suggested as
an important factor in the occurrence of nearly resonant pathways fdr the excitation of polyatomic molecules

* 1121. The pathways for excitation to an excited state with three vibrational quanta in SF6 are indicated
schematically in Fig. 1. In the numerical calculations reported in this paper, we shall use a model of the
excited sutates and transition moments of SF6 that was recently reviewed by Cantrell, Letokhov and Makarov
1I(c)l. In this model we employ effective states InLIR> that represent grouped states of the real SF6
molecule, with with energy levels given by

E(n9LR) anv3 + n(n-l)X3 3 + 12(2+) - 2n G3 3 + B0 J(J+I) + B0 3 R(R+I) - J(Jl) - 2( 1+) + 2nJ (1)

* where n is the number of vibrational quanta; I is the vibrational angular momentum number; J is the total
angular momentum of molecules; R is the rotational angular momentum of the molecular framework; B0 is the

* . rotational constant of the ground state of the molecule; f is the magnitude of the vibrational angular
momentum in units of h; v 3 is the molecular vibrational fr quency corrected for anbarmonicity; X is a
vibrational anharmonicity constant; and G33 describes the anharmonic splitting. The transition a ments in
this model are

nLJ=R; n+l, jjj'R * (1/3)1/2 <IJo > <a £ f j 11 n'l, V> W vCu'J'1'R) (2)

where <p > is the dipole transition moment reported in the Literature; W is a Racah coefficient; and the
reduced itrix element <(nij ijn+l, '> is given in the review [I(c)I. A detailed account of other improved
models for the energy levels of SF6 for purposes of calculations of multiple-photon excitation will be
published elsewhere.

Equations for Propagation

The propagation of a plane quasimonochromatic electromagnetic wave may be described in the slowly
varying amplitude and phase approximation (SVAPA) by the equation

3Z 2 (3)

where i E'exp(i*) is the complex electromagnetic field with envelope E' and phase. ; z is the propagation
distance; t = t-nz/c is the retarded time; n is the linear index of refraction; k=2n/A is the propagation
ConstanL; and

2 04 A. cm l clB PmA;m-l,B (4)
M.A.B

4 (S+iC) e e  (5)

is the slowly varying complex polarization. The complex amplitude is related to the real dipole moment
per unit volume P:N<p>, where p is the molecular dipole operator, by the equations

Pa 2Re(Deit) (6)

4 Ccos + S sin (7)

. iwhere
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-40 z 2inse (8)

and

= kz - Wt + (9)

-" - t Q (10)

In Eq. (4), the subscripts m and A denote, respectively, the vibrational quantum number and the set of
remaining quantum numbers needed to specify the effective state. The amplitudes C.A of the states JmA>
have been subjected to the transformation

, - .imwt,

C.A ' 8CA e (11)

which results in the Schrodinger equation

"AA .A PA; m+I,5 B c =iB+6NS-3;*-lBD, (12)

AA m--E. /I (13)

which must be solved in order to calculate the polarization P, Eq. (4). PreILminary accounts of results
obtained by the self-consisteat numerical solution of Eqs. (3) and (12) have recently appeared [81 and a
more detailed discussion is in preparation.

Excitation of a hultilevel System by a Pulse with Finite Risetime

When all the detuninss A., for m a 0 are large compared to the Rabi frequency 1l(c)]

W U--I(14)

then the amplitudes - of the states JmA> that are connected by dipole-allowed transitions with the initial
(around) state )OR> :"ay be calculated by first-order time-dependent perturbation theory. For an incident
pulse

l+e -(t o

which describes a laser pulse with a risetime t and a fall time y-l, an analytical expression for the
amplitudes of the states with ocl may be.obtaingd provided that

0 YtO< 1. (16)

In this case the solution of Eq. (12) in first-order time-dependent perturbation theory for the initial
condition c OB 1 , C MA so (. *),

* Atc ) 3 exp(At') exp(-iA t"),A,08 (t")dt" (17)

may be explicitly evaluated 1(a)l with the result

(RmAB ~E0  2ft 0exp(iA.Atf)
ZmA~t 2h ew - e

where

w a R(AA.iY)t 0  (19)

In the limit of a rapid rise (lA.Af t0<<) and a slow fall (ytO<<1),
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;I~t exp~i~t') "ha-- (20)
. -,A

. and the polarization becomes (assuming that only ml is excited)
"'m ( 03,1 2 Eo

3 A 2 OI exp(i t') (21)
A 204M

This is identical with earLier estimates based on the approximation of an instantaneously switched-on
pulse. In the opposite limit of a slow rise (I.A 4 tol) and a slow fall (yt0<<I),

; (t ,) s ~a AOBE OtOexpl(LiAt' - nl1mA Lo)C(3 (22)

• where 9 = sign (AreA), and the poLacization becomes

.A (23)
A

In other words, the amplitude of the sideband at the frequency w-A = E / is reduced-in this case by the
factor exp(-n% IA tO). This general conclusion for'multilevel sys ems establishes an analytical foundation
for qualitativeT. similar conclusions arrived at by numerical methods in the special case of a two-level
system by Eberly, Konopicki and Shore (131.

* The Adiabatic-Following Approximation for Multilevel Systems

For a general pulse (for which iA I need not be large compared to we), and in the sudden approximation,
in which the incident field C(O,t') is 0 for t' 1 0, and-is E, for t'> 0, then at the entrance face of the
medium (z 0 0) the Schr~dinger equation (12) is (for-t'>O) thai of a system evolving under the influence of
a time-independent effective Hamiltonian whose matrix elements are

mA;mA S M

• (2.) anal a.,,,LO(m-0(24)

* In this case it is natural to introduce the eigenvectors IA> of Heff,

eff =h AIX> (25)

. which are known as the "dressed" states. In the sudden approximation, the molecular system is initially
-'.: (at L' a Ott) in that iuperposition of dressed states that results in the initial state just prior (t'=0)
*" to the switching on of the field 6

• a I <XI*(0))>J> (26)
4 A

Subsequently each dressed state 5A> evolves with the time dependence exp CiAt'), so that

cNA(t') I I exp (im" '-i~t')(<It(O)) (27)
A

In 'this case the macroscopic pularizstion induced by ((L') in (at zsO, before
Lis modified by propagation)

e(O,t') = I 8Uexp [i(A-A')t'j (28)

: where

4 , a 21N I I 1 (0) _* (O)<enI.BIA'><h~pD> <nCIA><h.> (29)
* *,A,B np C,D
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[ Eqs. (28) and (29) show explicitly the generation of sidebands at every frequency A'- A for every possible
pair of "dressed" states X, Al'.

In the opposite limit, in which the detuning A is large compared to the reciprocal of the shortest
time in which the field C changes significantly, t~rn the phase of the polarization P generated by the
medium quickly becomes the same as the phase of E. This statement, which is evident from the general
discussion of adiabacitity in the textbook of Laudau and Lifshitz (141, and from the calculations of Arecch
and Bonifacio 115), and which has been discussed more recently for a two-level system by Eberly, Konopicki,
and Shore (131, may easily be established by using the language of dressed states 18(a)). When the field
is switched on adabiatically slowly on the time scale of the reciprocal of the minimum detuning, then the
system remains in that "dressed" state that is correlated with the initial eigenstate of the system JA0>-9"
ItO(--) at infinite time in the past, i.e., with the initial eigenstate in the presence of a vanishing

- optical field. In this approximation the Schr6dinger-picture amplitudes are

" -iAot'-imut'

c (t') = <AJA0 >e (30)

(where A0 and IX0 > are (adiabatic) functions of t'), and the polarization in this approximation is

)(O,t') = 2iN I <mA A0 .><mBl0> jA;(L-I)B (31)
m,A, B"

Since the components <mA> of the dressed-state eienvectors IA> in the basis
ImA> may be chosen to be real, the polarization given by (31) is pure imaginary. Comparison with (5) (with
"=0) shows that in this case S(t')=O, i.e., that

P(O,t') = C(O,t')cos C , (32)

so that the macroscopic polarization adiabatically "follows" the field E(o,t') = E'(O,t')cos C. An explicit
evaluation of the eigenvectors (A> and eigenvalues A for a two-level system shows that Eq. (31) is identical
in that case with the adiabatic-following approximation of Grischkowsky et al. For a two-level system the
dressed-state eigenvalues are

A a ± Ia 2 +497'11 2  (33a)2 2

where 0 = P 0 '/2f1. The eigenvalue A (A is correlated with the upper (lower) level as E"O. The eigenvect
correlated with the initial (i.e.,grun) state at E'20 is

'A 

2

' 01A 2> = 14"(3b

< .ix I =AJ[ 2 
n l l /  (33c)

so that the polarization for a two-level system initially in the ground state is, in the approximation of
Eq. (31),

2iN 2 2iNp 2 (34)
1(A2)

2 2 11 2  A2+4 1J12

* which is identical with the adiabatic-following approximation of Grischkowsky et al. 1161. Thus Eq. (31)
defines an adiabatic-following approximation for multilevel systems. 1 We reiterate that this approximation
is valid only sufficiently far from resonance, i.e., when f(AA)min] is small compared to the risetime of

* E'(t').

L is evidenL that in the adiabatic-following situaLioni described by Eq. (31.) no resonant sidebands
are generated. However, frequencies other than the incident frequency w will still be present in the tield
radiated by the system,

_d(z,t') k f 6(,',t'ldt' (35)
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due to the phenomenon of self-phase noJulation 19,17). In the adiabatic-folluwing limit it is possible to
define the nonlinear susceptibility X(E') as follows:

X(E') = P(O:t) CQX? - 2ReD(O.t') (36)
E(ot') E'(,t E'(o,)

where D may be read off from Eqs. (4) and*(8). We note that X as defined in (36) contains all powers of
E. Eq. (36) is not restricted in validity to a pirticular order of perturbation Lbeory. However, under
some circumstances one may expand the nonlinear index of refraction

Ii. O =(+X)1]  (37)

approximately in the usual way:

n o +n 1 2 (')2!-i nO(38)

W e shall report a detailed numerical calculation of n* a and a as functions of w in a separate publication.
However, we note here that for a system 2 f Length L the fi

2 ld (351 radiated by the medium initially (for
sufficiently small z) grows as kL a (') , so that the Fourjer amplitude of ra at a detuning Aw will be
inversely proportional to the seconi derivative of IE'(t')] at the statiomary-pgase points:

- I2t- 12* rad( W) £J. -(E.. IP -"1  a
11 (a) -- JE'(39)

cadr'" I = dt')/2n0

This is, of course, the phenomenon of self-phase modulation, which is well known in quasi-two-level systems
. [171. The bandwidth of frequencies generated by self-phase modulation will exceed the original laser

bandwidth &i0 provided that

Er 2n kd a 1 
(40

*.: Preliminary estimates made with Eq. (40) indicate that the bandwidth of frequencies generated by self-phase
modulation exceeds &0 under the conditions of most muLtipLe-photon absorption experiments performed to
date 191.

Transverse effects (self-focusing and self-defocusing) will occur in the case of a rapidly-switched-on
pulse (i.e., for nearly resonant excitation) for a multilevel system as well as for the two-level systems
that have been the subject of previous studies. We are now conducting numerical calculations of trans irse
effects in- pulse propagation for multilevel systems, using previously developed numerical techniques [li].
One of these techniques is a perturbation approach that correctly describes the initial self-focusing
behavior without the numerical complexity associated with a full coherent self-focusing calculation. The
perturbation method uses two plane-wave pencils, one located on the axis of the (cylindrically symmetric)
beam, the other slightly off-axis and with smaller intensity. It may be shown analytically that these
pencils move with different velocities, and that the initial self-focusing is directly attributable to this
difference of velocities.

However, in the limit of a slowly-switched-on pulse (i.e., for nonresonant excitation) the transverse
effects associated with pulse propagation in multilevel systems may be discussed using the nonlinear index'
of refraction, Eq. (37). Whenever the expansion (38) is valid, then transverse effects may be calculated
using standard theoretical approaches that take (38) as a point of departure. We .shalL give a discussion
of transverse effects based on this approach in a future publication. Here we content ourselves with the
observation that the spatial growth rate a of the mode of the self-focusing instability with maximum growth
rate (1]1 is such that

aL 1 (41)

provided that

n2[E']
2

2E kL a 1. (2
2n0

Self-focusing effects may be expected to play an important role whenever (42) is satisfied, as it appears
*" to be in many multiple-photon absorption experiments (7).

* For a real molecular system subject to a thermal distribution of initial states, some molecules will
* satisfy the criterion for rapidly-switched-on pulses and other molecules will satisfy'the criterion for
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adiabatically-switcbed-on pulses. Under these circumstances the calculation must be pursued along diffe
lines for different classes of initial conditions. The dynamics of those molecules that are excited closj
to resonance must be described using the full Schr~idinger Eq. (12), while the dynamics of molecules excit
far from resonance may be described by Eqs. (30)-(31). Calculations using this technique will be. reporte
elsewhere.

Numerical Studies of Pulse Propatation in Multilevel Systems

Since Eqs. (3) and (12) are (formally) two ordinary differential equations in the different independ
variables z,t', coupled by the (nonlinear) polarization 6z,t'), the self-consistent numerical solution
(3) and (12) may be obtaine4 by essentially the same methods used for pulse propagation in two-level syst
by Hopf and Scully 1201 and Icsevgi and Lamb (211. In broad outline, the method consists of integrating
(12) to find cA(Z,t') and eventually 1(z,t') (Eq. (4)) as functions of t' for a given (fixed) value of
using the (known) dependence of C(z,t') on t' at the position z. Eq. (3) is then integrated one spatial
step Az for each (discrete) value of t' to find the field l(z+Az,t') as a function of t' at the new posi
z+ z. Equation (12) may now be integrated to find cA(z*Aiz,t') as a function of t' at z &z, and so on.

The choice of a numerical algorithm for the solution of equations such as (3) and (12) has been care
" studied by Icsevgi and Lamb 1211, who found the modified Euler predictor-corrector method to be fast and

give acceptable accuracy. Since our problem involves substantially more time points (values of t') than
were employed by Icsevgi and Lamb, we chose tbe slightly more accurate'Haming predictor-corrector method
1221 for the integration of (12), but retained the modified Euler method for (3). In fact, the differenc
between results obtained with the Naming and modified Euler predictor-corrector methods in the integrati

- of (12) in test calculations were not significant. In all cases we used iteration to provide the initial
i -Ivalues at two successive temporal or spatial steps required to start the predictor-corrector algorithm

The temporal and spatial step sizes h and h were chosen to be sufficiently small that further refi
sent did not significantly affect the solution, but large enough to minimize computational time given the
desired accuracy. It may be shown that Eqs. (12) display an absolute instability for time-step sizes ht
such that

la1m iL ht ) 1. (43)

The necessity to avoid this instability (even for the amplitude.cM of a state for which IA,* is so large
* " in comparison with NR that Ih.IA is always <1) imposes a maximum acceptable value of ht tha (for weak

fields) may be very small given the other physically relevant time scales in the problem, such as (WR)-.

For the molecular energy levels and laser frequencies used in our calculations, the choice

1 2Mr
b - (44)

-.'- -" t 200

gave acceptable results without requiring too much computational effort at low values of wR. Typical
numerical results for the amplitude 11/E0 and phase O/n of a pulse

0(0,t') < 0

EO ,  t' k 0 (45)

are shown in Fig. 2.

In order to investigate the frequencies introduced into the pulse as the result of propagation, we
calculated the sAectrum of the field radiated by the medium, Eq. (35). Since the field calculated self-
consistently is .(z,t'), and since Eq. (3) may be rephrased as the integral equation

:(z,t') inc (t,) +4 (zt') (46)

(whe re 4r is to be calculated using the self-consistently determined polarization ), we see thatred
.cad (zt') = (z,t') -dnc Ct') (47)

To calculate the spectrum of drad (z,t'), we have calculated the numerical Fourier transform of the auto-
correlation function

G(tOT) * T (t') 6 (t'+T)dt'. (48)
to rad

Since the generation at sidebands ts a non-adi.ihatic phnomenon, the autocorrelation G(to,T) and its Fourie
Lransform will depend on t 0* We have chosen t0=0 in the spectrum of Fig. 3, which corresponds to the same
conditions as in Fig. 2. t
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Using this technique we have calculated the sideband spectra for systems consisting of two, four, and
ten energy levels, as functions of the propagation distance z and the laser electric field E1. and for a
variety of functional tonms for the incident pulse f (t') I8(u)j. rhe energy levels jr.- as , ' (.'0
two-level system: The levels (niJR) = (JOJ J ) and CI ,J0 -l,J0 ). Our numerical results ror this case
appear to be in qualitative agreement with 2h(e previously published calculations of Eberly, Konopicki and
Shore (131. A quantitative comparison is impossible, owing to the fact that the vertical scale indicating
the magnitude of the Fourier transform of G(t ,T) was omitted from their Figs. 2-4. (b) Four-level system:
the levels (nILJR) = (O,O,J0,J0 ), and (1,1,J,R9 with J = a

0
* J - 1. This system is an example of a general

family of systems with a common lower level, and in which .he upper levels are not radiatively connected
among each other. Our calculations reported in Ref. 8(a) are the first calculations of which we are aware
that treat the general problem of transient phenomena in pulse propagation in this type of system. Earlier

• pulse-propagation calculations on a three-level system with a common upper level -,'mped by a transition
from one of the two lower Levels addressed primarily the problem of gain on the transition that was not
pumped initially [231. The published calculation of distortioniess.pulse propagation in a three-level
system by Higginbotham et al. [241 actually assumed two ot the levels to be 4egenerate, thereby eliminating
many of the effects we wish to investigate. The investigation of pulse propagation in degenerate systems
by Hopf, Rhodes and Szdke 1251 concerned an ensemble of two-level systems, and not a truly multilevel
system of the type considered here. (c) Ten-level system: the levels (niJi) = (O,O,Jo,J0 ); (l,,J,J0 )with J = J Ji 1; (2,0,J0,aJ); and (2,2,J,J ) with J i Jm - , ... J 2 This is an example of a

* general tYlpe 6f energy-level scheme in which each level wi~h vibrat iona quantum number n is connected
radiatively to several levels with n' z n- 1. Our results reported in Ref. & and in Figs. 2-3 here are the
first published calculations of pulse-propagation phenomena in such a system.
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RADIATIVE LADDERS TO A v--3 STATE

(3,I,J0 -I,j 0 )w (n,IJ,R)
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Figure 1: Schematic diagram of dipole-allowed transitions (indicated by arrows) that begin on a given
effective state 14(c)] (nIJR) (0,O0,J0 0 and end on (3,1,J0 - I, Jo).
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Figure 3: Power spectrum of the field shown in Fig. 2. The units of the vefticaL axis are (sv ca1)2

and the resolution of the numerical Fourier transform is 0.44 cm . The initial time t0 was
taken as zero in Eq. (48).
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:Swept-gain superradiance in two- and three-level systems
.-with transverse effects and diffraction (*)

F. P. Mattar and C. M. Bowden (*)
Aerodynamics Laboratory, Polytechnic Institute of New York, Famingdale, New York 11735, U.S.A.

(00) Research Directorate. US Army Missile Laboratory, US Army Missile Command, Redstone Arsenal,
Alabama 35M1, U.S.A.

' Abstract. - Results of numerical calculations using computational methods developed earlier to efficiently treat
transverse as well as longitudinal reshaping associated with single-stream and two-way pulse propagation and
generation effects in cooperative light-matter interaction& using the semiclassical model, are presented. Specifically,
the results are preeted and discussed for the two. as well as three-level system for a traveling excitation for both
Gaussian and uniform gain distributions. Conditions are established for lethargic and highly nonlinear soliton
pulse evolution through the asymptotic large Z regime.

Summary. - Computational methods based upon The numerical code was extended (1] to represent a
Ae Bloch-Maxwell semiclassical model were developed collection of three-level atoms in the presence of two
•rlier (11 to efficiently treat transverse as well as laser fields, consistent with the usual parity conside-
3ngitudinal reshaping and diffraction associated with rations 14, 5]. Results are presented for traveling

t ingle-stream and two-way pulse propagation and excitation corresponding to optical pumping for both
eneration effects in cooperative interaction between Gaussian and uniform radial gain distributions and
" e radiation field and a medium consisting of a several different temporal functions for the excitation.
i,11ection of two-level atoms. Results of the calcula- Superfluorescence is shown to occur for conditions

,on are presented for pulse evolution as a function analogous to those for the two-level case [1]; however,
f propagation distance Z in the two-level system for two-photon (coherent Raman) effects play a strong
traveling excitation with both Gaussian and uniform role in pulse delay and shape characteristics, as
ain distributions with a clrssical initial tipping angle predicted from earlier analytical work 4, 5]. Pulse

-stribution. We present the conditions under which evolution characteristics are shown to depend upon
te system evolves from a superfluorescent condi- the excitation temporal function dependence and
in [2. where the atoms are contained within a radial function dependence as well as temporal
)operation volume, to an asymptotic steady-state [3) duration and total area.
,r sufficiently large propagation distance Z where
)liton behavior is exhibited. The steady-s'.: coadi. We show also in this case the conditions under which

-3n is interpreted in terms of the asymptotic behavior the system evolves to an asymptotic, steady-state
'the principal mode pulse area and stabilizatitn of the condition at sufficiently large Z in terms of the prin-
itire pulse shape. Pulse areas greater than t are cipal mode pulse area and total pulse shape stabiliza-

4 own to occur becamuse of multiple pulse generatn tion. As in the case of two-level swept-gain super-
id self-focusing. Furthermore, it is shown that radiance, strong self-focusing and multiple pulse

-flraction plays a much greater role in the results for generation is indicated.
e swept-gain superradiance regime [3) than for the
ndsuions for which superfluorescence occurs [2] Finally, results for simulton 16] behavior in thei od onsfor hic suprfloresenc occrs 2].three-level system is presented with two injection
ie results of our numerical calculations for the signlsals is presen with o ico

i4ymptotic large Z regime are compared with the signals and also with one injection signal (the optical
:e-dimensional analytical results for swept-gain pump) and a uniform tipping angle (determined from
perradiance [3). a thermal population distribution) which allows the

second pulse to evolve. The latter conditions cor-

Work jointly spnsored by the Research Corporation, th respond most realistically in the large (7] region with
a Wnatiorkoion o( Mobil Corporaota, t Univesity o experimental conditions for swept-gain superradiance

co. The US Army Resear c M ob i DAAG29-79,h CU0t41 reported in the literature [7, 8]. Results of the calcu-
SOffice o Naval Research. NOOO-i4,I0,C,0174, and Battlle lation are presented and compared with the experi-

uimas Laboratormes amorat DAAG29-76.D-O100. mental data.
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ADAPTIVE STRETCHING AND REZONING AS EFFECTIVE COMPUTATIONAL TECHNIQUES
FOR TWO-LEVEL PARAXIAL MAXWELL-BLOCH SIMULATION

F.P. MATTAR ** and M.C. NEWSTEIN *
Polytechxuk Iit an of New York, Brooklyn, NY 11201. USA

The methods, developed in gas dynamics, which make possible the detailed calculation of the coherent interaction of
short optical pulses with a nonlinear active resonant medium are presented. This paper extends earlier work by givinj a
rigorous and self-consistent solution of the coupled nonlinear Maxwell-Boch equations including transvere and time.
dependent phase variations. In addition, the onset of an on-resonance self-focusing and beam degradation were predicted
in absorbers and in amplifiers. To accurately handle such severe energy redistribution, dyamic nonuniform computational
grids were found to be necessary. The self-focusing result agrees very well with a previous perturbation treatment and with
recent experiments in sodium, neon and iodine, whereas severe beam distortion, when rigorously addressing the problem of
transverse boundary, was observed in high-power lasers utilized in inertial fusion experiments. The formation of dynamic self-
action effects is due to the combined effects of diffraction and the inertial response of the active medium.

I. Introduction ping and the medium response will inevtably redis-
tribute the beam energy spatially and temporally

When an intense laser beam propagates through a [21-23]. This transient beam reshaping profoundly
resonant active medium, the absorptive and disperive affects a device that relies on this nonlinear inter-
properties of the medium affect the shape of the laser action effect.
beam profile, thus altering the characteristic structure This modeling encompasses self-phase modulation,
of the medium [1-6]. This modified matter will then dynamic longitudinal and transverse reshaping, and
reaffect the field profile. The resulting cross-modula- coherent energy exchange in an inertial medium.
tion of light by matter and matter by light is a con- Effective mathematical transformations which are
tinuous self-sustained phenomenon. consistent with the physics make attainable a hereto-

The current research was undertaken in an effort fore unachievable solution [24-29].
to answer detailed questions relating to the coherent Light propagating in free space experiences diffrac-
exchange of energy, nonlinear phase distortion, and tion spreading which alters the beam shape [30,31).
beam quality in high-power laser transmiusion; the In the complicated nonlinear problem, the interaction
method was chosen to develop a suitable theory and intertwines the various parts of the beam; the beam
realistic numnerical computer code based on close col- transverse dimensions change drastically. As the trans-
laboration with experimentalists [6-201. It is mission distance increases from the launching aper.
believed that real-life experiments would depart from ture, one is inevitably faced with substantial numeri-
the predictions of previous plane-wave analysis as cal difficulties. For example, a numerical paraxial
sketched in fig. I. The interplay of diffraction cou- code using a uniform, radial grid can suffer a serious

* drawback which would make the cost of the calcula-
tion prohibitive. The number of points required

* Work jointly supported by F.P. Mattar, the Research would need to be increased tremendously if the tran-
Corporation, the International Division of Mobil, the sient beam undergoes severe self-divergence or self-
University of Montreal and the US Army Research

Office DAAG29-79-C-0148. convergence. It is therefore imperative that the tranis-
Aerodynamics lAbortoi, verse mesh be sufficiently small to correctly sample

000 Electc Ensneering. the oscillations of the field amplitude and phase.
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Coherent Pulse Propagation If. for alf-focaud bums, a fxed, tmnsvene mesh
is used, there may be in the vicinity of the focal

L Uuual Thor10reg0o a lak Of resolution as displayed in fig 2. A

I. D nonneI(0le Ion of computational effort in the1Dim.in of tv 'S~ the beam aso ccun'In aneffort to main

'Uniform Plane Wave' tab accuracy and eficiency, the governing equations
wee inteated ush a simple coordinste transforms-

IL Usual Expement tion which was revised at sutable ntervals to $ilow
the numerical rd to follow the pulsed-beamn bMav-

S 'ior. The mesh network will expnd or contrac

'Gausslan, , aordlnoly.
The Interdependent nature of each aspect of the

Fig. 1. The IWO o the art inCoherent p-a s itosStoa is problem requires a thorough comprehendon of thedIIe Tim thsomiel affrt was re.tiae to a w~ron

plum wave p or to the work of Newstalis ad cogeosa u;
"I.. the uad expernent was uu out udins a Ga s.
dan bum To slmuate a uniorno plame wave, the detector
dh.i .u s se lactd as asl s posible wh be com p red 4

to the Getalan bea dnw%,
t.. A-'1.25

'1'1

Ii

a

Ig. .(a) bomest* r presetatiof to he ben a ectb 1
a Itep unees eiff-focat:Thecros4etiondeareases a' t t t t t t t t t t t
a fnctloa of the pmpqastion distane; (b) An bometric db. 1 0

play of fe time Integated field aare as a functlon of p and FIg. 3. Two.dlmeuulonsl preecribed rezoning for p and ij. As
q to Gastate the resolution lietation associated with URI. the beam narrows the desiy of transverse points and the
fonn mob. trammbslon planes imem simutaneously.
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beam starts to break up. This effect will intensify to
, such an extent that An crashes to an increasingly

*012 . . smaller value and the calculation must be discon-10 . AFO 1.n.AFI 1.0 iu.

It is noteworthy that the choice of Ai and AP is
restrictively subjected to the definition of the Fremel
number [65]. The ander the Fremel number the

F-cnio PW smaller must be the ratio [Ai/(p) so that the
numerical instability criterion obtained by linearizedtheory, Is always u=tafd.

Besides the coordinate modification, a change in
the dependent variables is introduced in terms ofdrt"t ery ei nday st isfied.

renormalizing factors (such as the reference beam
waist, wave-front curvature and field amplitude) to

.'._ extract the radial dependence of the phase front and
"-A 9 Apo any Important source of amplitude variation. As a

functions vary more gradually in the new coordinate
system: what one calculates, therefore, is a deviation
from a reference Gauuian beam. As soon as the local-

7 aind computational mesh departs significantly from
7i . ! the physical bp.n wast, the renormalization proce-

,--dust Is refreshed using pertinent moment properties
-tFCJ of the physical quantities. Thus, the grid can be/c , -.- rpc@ c ,oarse, lea exteniv and more efficient.

Another major obstable is the cumulative memory
*effectIn the response of the medium to theabur

beam. For computational efficiency, the temporal
, grid will be nommiformly stretched as indicated by

efther curve in fig. 10. In such an involved computa-
10 tion the cslculational efficiency of the algorithm is of

*,~ crucial importance. A brute force finite difference
10 t t t f t t t treatment of the governingequationsnot feasible.

10 1 The adoption of nonuniform masin tediques
Fig. 4. Sef-adjumed two-dimaonal reacti fore p mqto defined in connection with aerodynamics problems
fallow mare losedy the sctal bern cractertim. The (nr- has proven to be very foresightful. These numerical
inditins) Gaumlan reference bemn is redefined during the cai- methods, designed by Moretti [2S-29], discriminate
culation. between different domains of dependence on differ-

ent physical parameters; a higher degree of accuracy
in the actual physical problem thus became feasible.

relevant physics. In setting up variable grids there is
an important factor to be considered: one must
address any transverse energy distribution while ana. 2. Physicd badcground
lyzing the longitudinal alterations (fig. 3 and 4). If a
variable longitudinal mas, Ai, is introduced without The great interest in understanding the transmis-
carrying a variable, radial mesh, Ap, to handle large sion of intense ultra-short pulses through a non-
increments along the direction of propagation, one linear medium is due to their application in laser-
inevitably faces a steadily decreasing Aq step as the induced energy release via fusion of hydrogen iso-
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tope. Those pulses are assumed to be so short that no -IF Vile + aeta? a7, (1)appreciable pumping (or other oeerg-exchanpg pro-

ceases) can occur during the pulse. The resonant me- a Ia? - +
diium Is thus left in a state of nonequilibrium after the and
pulse passes. When deigning high power laser sys. 3W/3r --1/2(e.7+ e?.) (W w)/r, (3)

* terns, one must verify that no beam distortion could - ,
evolve. Any departure from the desired uniform illu- where
minatlon of the target could prevent the fusion mech-
anism from taking place. One controls the cumulative e (Z.h) ru' and ?u (2/p) ?',
interplay of beam diffraction with the medium inertia E - Re(e' exp{i((c/c) z - wt)} 1;
to avoid triggering the onset of any substantial self-
wifm phdnorena. with

This model is readily deduced from the Maxwell- /C =

Bloch equations while taking into account the mutual
influence of the transient beam and the resonant two- and
level atoms. The intense traveling electric field is .l i a."2
treated classically, whereas, the two-level "yste Is Te k" .I(O
analyzed quantum mechanically. In particular, the

medium response is described using the density after applying L'Hopitars rule, the on-axis Laplacian
matrix form&= (6,311. None of the simplifying reads:
approximations (such as adiabatic following [17], or -2e 2 /3,2 ;
rate equation [18]), is introduced; Instead an exact
self-consistent numerical approach is developed, and

This first nonplanar study simulates more accu- P- i Re[2'exp fi(( /c) z - xt)} I
rately the experimental configuations than the pre-
vious restrictive one-dimensional theoretical attempts. The complex field amplitude e, the complex polariza.
The model takes into account the interplay of diffrac- tion density?, and the energy stored per atom W, ar
tion, time-dependent phase, nonlinear atomic inertia normalized functions of the transverse coordinate
and initial maner and field boundary conditions. p a rlr, the longitudinal coordinate t7 znw, and

This modeling, evolved from a close collaboration the retarded time r - (t - mlc)/r,. The time scale is
with various experimentalists, can lead to a better normalized to the input pulse length, rp and the
understanding of the basic cooperative effects in transverse dimension scales to the input beam spatial
light-matter interactions. Extensions of this study width r.. The longitudinal distance is normalized to
may also help select optimum design configuration the effective absorption length 171, (a~u)", where
for superfluorescence (38-43], optical bi-stability = ip 2 N
( (41-471, and double coherent transients [48-521. Nff L - [c ,p, (4)
Further benefits may include the development of new
methods to generate utra-short pulses as required for here, w is the angular carrier frequency of the op.
optical information trasmission and optical commu- tical pulse, uis the dipole moment of the resonant
nication. transition, N is the number density of resonant mole-

cules, and n Is the index of refraction of the back.
ground material. The dimensionless quantities awm

* 3. Equations of motion (w - wo)r.. ri /2i/1lp, ard 2 - Ti/r. measure the
offset of the optical carrier frequency w from the

In the slowly vaying envelope approximation the central frequency of the molecular resonance wo, the
dimensionless semi-classical field-matter equations thermal relaxation time T,, and the polarization
(6,22,23] (which describe our system in a cylindrical dephasing time T2, respectively.
geometry with azimuthal symmetry), are: Even in their dimensionless forms, the variousS

SI
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quantities have a direct physical significance. Thus 2 existence of transverse energy flow is clearly asso-
is a measure of the component of the transverse oscil- ciated with the radial variation of the phase of the
lating dipole moment (9 has the proper phase for complex field amplitude e. When JT is negative [Le.,
energy exchange with the radiation field). In a two- ao/3p > 0], self-induced focusing dominates diffrac-
state system, in the absence of relaxation phenomena, tion spreading. Since a/a p determines the direction
a resonant field will cause each atom to oscillate and speed of energy flow, it is reasonable to monitor
between the two states, W - -1 and W - +1, at a Rabi either a phase gradient or the transverse energy cur.
circular frequency fR -e/p = (ulh)e'. Thus e mea- rent for a central diagnostic as the calculation pro.

* sures how far this state-exchanging process proceeds ceeds.
in a fwhm pulse length 7,. One may rewrite the continuity eq. (5) in the labo-

The dimensionless parameter, F, is given by F = ratory frame to recover its familiar form:
X (aefrry 1(4w4). The reciprocal of Fis the Fresnel W W
number associated with an aperture radius r. and a V.J=-±- 2W+ - A 2 (9)
propagation distance (a~r). The magnitude of F aTL c' idf

determines whether or not one can divide the trans-
verse dependence of the field into "pencils", (one per
radius p), which may be treated in the plane-wave S. Outline of numerics
approximation. The diffraction coupling term and the
nonlinear interaction terms alternately dominate The retarded time r refers to the actual arrival
depending on whether F > 1 or F < 1. time in a stationary frame of the front of the pulse at

As outlined by Haus et aL [ 19], the acceptance of the position z. This coordinate transformation, from
eq. (3), as describing the coupling of the material to r to r, fig. Sa, allows an accurate numerical scheme to
the electric field, implies certain approximations. be developed for which the increment in tj and r need
Eq. (3) shows that the product e 9of the electric not be related in any special way.
field, e, and the polarization, :?, causes a time rate of Herein, the equations of motion are solved in the
change of the population difference (i.e., in medium near-field region of an optical pulse, initially Gaussian
energy) leading to saturation effects: inertial effects
are considered.

cT

4. Energy consideration a

From the field-matter relations (1)-(3) one ob-
tains the energy current equation: _

+iF ~ ~ ~ ~ ~ ~ ~ d --eL-- *~)+ , e*2+e*
V- J a-2[a,.W + (W- Wo)r], (5) , ch, zh

where, using the polar representation of the complex ". r
envelope, we have Z b

e -A exp+i01 , (6) !i - '(,

hz=A 2  (7) ALONG I t..
an 

(CONSTANT T ) ,'

and p.W

* JT 2F'A aI8P. (8) Fig. S. Graph (a) displays the retarded time concept;
(b) outlines the numerical approach: a marching problem

The componentsJ. and JT represent the longitu- along q for the field simultaneously with a temporal up-
dinal and transverse energy current flow. Thus, the grading of the material variables along r.

p.
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in both p and r. Thi amounts to a mixed initial with
bonay-aupolm ofe inta cofgrain of I 8Fthe laser beam and the resonant medium are specified 7TF = F_ (24)

subject to certain conditions for r ' 0 which must be -0 (24

satisfied at all space points. Furthermore, the field aM
boundary condition at q - 0 is time-dependent. See 1.. MM , (25)

g Sb. For the numerical solution, a temporal-spatial
mesh of grid points is used to represent the p space, subject to the initial and boundary conditions:
At a gm plane , the values of the various depen- I. for r > 0: F - 0, M - Me known function to take
dent variables are obtained for all stations. This is into account the pumping effects;
repeated until the desired propagation length has 2. for i - 0: F is given as known function of r and o;
been traversed. 3. for all q and r: [aFl8p1 o and [aF/apJ =,

The basic numerical algorithm consists of a com- vanish, with or defuinn the extent of the
bned explicit/implicit method. The MacCornack region over which the numerical solution is to be
[241 two-level predictor-corrector, nonsymmetrical determined).
finite-difference scheme is used to advance the field
equation along the direction of propagation, il, while The derivatives in (23) appear only with respect to
the modified Euler three-level, predictor-corrector space variables; time enters only implicitly, through
scheme is used to update the material variable in the right-hand side terms. Conversely, the derivative
time-retarded time r. The mutual light-matter influ- in (25) is a time derivative only, and the space influ-
ence Is a mixture of a boundary value (for advancing ence is provided by the right-hand side terms. Thus
the field) and an initial value problem (for calculating the equatim can be considered as somewhat uncot-
the atomic responses) (9]. To improve accuracy and pled and separate integration procedures are adopted.
speed up convergence, cross-coupling is accentuated. We cannot be sumre that the accuracy of the Integra-

. With such steps, the scheme becomes as flexible as a tion procedure is of the second order in ,i and Ap as
strongly-implicit algotithm. The final field value, well as in Ar for the material variables, and similarly
rather than the predicted one as done classically for the field variable with respect to Ar. This algo-
[6-10, 25, 20,221, is used to correct the material rithm uses the two-level nonsymmetric, MacCormack

variable, and the final material values instead of the explicit predictor-.corrector finite difference scheme
predicted ones are used to correct the field. The for marching the electric field F along i? and the
final variables are obtained as solutions of a set of three-level modified Euler scheme to integrate along r
ft, simultaneous, algebraic equations, the material variables. To ensure second-order accu-

racy in all space and time increment steps simulta-
neously for all the dependent physical, field and

6. Details of numerical procedure material variables, the final field F instead of the pre-
dicted F is used to evaluate the finalM; and the final

An outline of the numerical method s Illustrated M instead of the predicted M, to correct the field vari-
* using two simplified equations that are representative able F. For simplification a quasi-linearzation (see

of the full set describing the propagation and atomic Moretti's treatment of the chemical kinetics problem
dynamics effects. Here, the material variables are [261) is introduced as follows:
denoted by M; either of the electric field variables Is

*.- - denoted by F. Both variables are complex quantities + FiJ + FM1 , (26)
which an functions of the propaptional coordinate, where i means the "initial value" and can reasonably

" q, the transverse spatial coordinate and., the be denoted by the predicted values. This approach
retarded time. With M, the equilibrium value of M, follows readily the Taylor expansion of the product
one can write the representative equations as: FM:f.F

aF ral

FL
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(27) 7. Importance of boundary conditions

When the laser beam travels through an amplifier,

truncated at first-order terms. the transverse boundary has an increasngly crucial
Mathematically, this algorithm reads as follows: effect in contrast to the absorber situation. The laser

with field which resonates with the pre-excited transition

FQ 7, m Ap, k 47) a 8, k, (28) experiences gain; whereas, the laser field which
.F = i iTF - (/p){a/ap(pF)} (29) encounters a transition initially at ground state, expe-
.. 'Friences resonant absorption and losses. A more ignifi-

the predicted field can be written as: cant portion of the pulse energy is diffracted out-
S -(0 wardly in the amplifier than in the absorber [23].

P "4,'k + A? (,. k - L FA, mk, (30) In resonant, nonlinear, light-matter interactions,

whereas the corrected field reads as follows: the velocity profile is not uniform across the beam.
The intenity at a particular radius as well as the ii-

,- (F,,k + P4k) +  ( (l L n W, tial state of the transition dictates the distinct delay/
(31) advance that the "pencil" will experience at a panic-

LF and L3 are the forward and backward differ- ular radius. Consequently, these boundary reflection
encing of the transverse Laplacian operator cylindri- conditions tend to play a substantial role in the am-

- cal coordinates with azimuthal symmetry. plifler calculations and could obscure the emergence
The material variables are integrated in the follow- of any new physical effects. Hence, acceptable results

ing anner. The predicted values are defined as: are achieved only by carefully coupling the internal
points analyu:I -4th the boundary points [27].

iik2c = inMnt~ + 2 Mr) -+J + M.), Special car- is required to reduce the boundary
(32) effect to a in: almum. By using nonuniform grids and

while the corrected values are given by: confining the active medium by radially-dependent

*, t=I/ + A t) + A ((- . t) absorbing she.la one can construct an effective,
-'.1 .rel'sble algorithm, locally consistent with the physics

+ #4rk,,k+ I + Ik 'k, ~ k+ I of the problem: i e., the boundary condition to be

+ ( W M + M) . (33) discussed below is an absorbing surface. This condi-
tion represents an actual experimental approach in

.. Rearranging, one has which the laser amplifier is coated to circumvent any

0t+ al +b 1F#,k + q nk (34)" spurious reflections.
"a 2 + + (35) Mathematically, this approach is implemented by

4k + k+, introducing a radially-dependent loam distribution.
which is a set of linear algebraic equations that can The los coefficients obey a Gaussian-dependence
readily be solved by straightforward elimination, peaking at the wall itself. Three forms of loss were

The numerical code has been tested systematically studied: Ohmic linear form, cubic Kerr lon, and
by insuring the reproduction of analytical results of reduction in the nonlnear gain of the active medium.
problems such as free-space propagation (31 ], Gaus- For strongly amplifying media, the transverse
sian beam propagation through lenselike media [32], boundary could still cause computational difficulties

. Bloch's solution at the input plane for an on-reso- for selfdiverging beams, because it is difficult to
nance real field [6] and coupled uniform plane-wave select, beforehand, the functional location of the
calculations for an input 2ir hyperbolic secant boundary. An alternate approach to the problem
[6-111. Identical results were obtained solving these would be to extend the transverse grid to infinity as
problems expressed in the elikonal and transport displayed in fig. 6. In practice, the most effective
form [I], and the three-dimensional results have been treatment of the dynamic, transverse, boundary con-
compared qualitatively and quantitatively with an sists of implementing an absorbing surface while con-
analytic perturbation in the reshaping region [22,40]. currently considering an infinite physical domain and
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mapping it on a finite computation region, and
Hence, the deiued trnfomaton pmocms for the a110 OKI - e) (41b)

transvers coordinate is:
on axis:

-- tar-h( p), 0<1< , Ns>NV, (36) 1-.. 1.0. (41c)
(k I - l)lIn, I <k<Ns, (37)

0M. =PQVj . (38) The dlffraction coupling term becomes:

, (39) pa*at'(+ )' (4-U0 T( jO ( --9l Ie 4d

with the on-axis contributionwith.

1 ri + IVA) (0)!3 a t 2 + 1i !(ae\Pu- og 1  J (40) ], ! , ; l

.. with , V denotin the acua ms=dmm radius in2j: \ a/ a( --). (41. e)
wiurs.h e active mediu i. stil present. In the region
extensding from IJ(NA) to ,o(N)0 there it no ampli- In fig. 7, 'h •x ,andam second radial derivatives and

4 ~igmedium; instead, there is an absorbing layer. the Laplaclant terrm are drawn. Flg. 8 contrasts in the
The mapping derivatives can also be defined ins- stretched radial coordinte system, the transverse

lyticaly as follows: coupling and the electric field.
When using the above, the numerical domain sea-

alIap u 0(1 - f') 0/ sech2 (Jo) (41a) siti'vity and the dependence of the physical pazam-

I

W WZ'T II)'82jp - pa



74

F.P. Mattr, M.C Newstein lAdepuve stretching and rezonft 147

C 

:D 

g. 

0

%A

CAU 
TillKA 

m - at

Fig. S. This rigure cotat die Laplacian dependence for agiven Gaussan profile for various non-uniform radial point
densities.

[ 8. Prescribed stretching

A Proper handlin; of the differential equations of
* motion is possible provided there are enough mesh

points to insure adequate resolution where phase gra-

dients change very rapidly. However, to keep the
*C computing costs at a minimum a nonuniform grid is

used.
It is defined by widely-spaced computational

nodes in the area most distant from the plane of
interest and densely clustered nodes in the critical

2 region of rapid change; the latter being in the neigh-
borhood of maxima and minma or, for multi-dimen-

sional problems, in the vicinity of saddle points.
Consequently, resolution is sought only where it is

needed. The costs involving computer time and men.
S ory size dictate the maximum number of points that

A can be economidcally employed. In planning such a
- variable mesh size, the following [28], must be kept

in mind:LL (a) The stretching of the mesh should be defined

" - 1.o analytically so that all additional weight coeffl-
"4 u~W0W M MtAMCATKAL AMoot - cients appearing in the equations of motion in

Fig. 7. This graph illusuates the dependence of the radial the computational space, and their derivatives,
mapping and the derivatives on the different parameters can be evaluated exactly at each node. This
versus the uniform mathematical radius. avoids the introduction of additional truncation

errors in the computation.

eters on the boundary conditions can readily be (b) To assure a maximum value of AT, the mathe-
* assessed. matical grid step, the minimum value of Ar, the
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physcal time increment, should be chosen at 'r 0 e + (4/2) log("/(I - 7)) (42b)
each step according to necessity. This ians tt where a is a stretching factor which makas points
the minimum value of Ar must be a function ofthe ~ .more dens around re, the centre of gravity of thethe lshe f6-ctiou steepess. trnsormation. In particular,

(c) The minimum value of Ar should occur inside
the region of the highest gradient which occurs a ' rwindo./log(Nup - 2) (43)

am the puls peak. with Nu, is the number of uniform points in the
For example, following Moretti's approach, if T with N., iis grh dn ander wof ouniform ep ten poran whe

tanh(r)(4)naublrmathematical grid, and is the temporal win-

semiaxis r greater than zero can be mapped on the

interval 0 < T < I with a clustering of points in the 'window = (Tm - rJ), (44)
vicinity of r"- 0, for evenly-spaced nodes in t.

This mapping has several advantages. It introduces re is an arbitrary point used to define the centre of
into the equations of motion new coefficients which transformation so that the change of the coordinate
a defied analytically and have no singularities. It will be optimum for more than one plane along the
avoids interpolation at the common border of meshes direction of propagation. Fig. 9 illustrates the trans.
differently spaced. The computation is formally the formation and its different dependence on the par-
same in the '7" space as it was in the r space. Some ticular choice of its parameters.
additional coefficients, due to the presence of the Note that a derivative of the mapping function
stretching function, appear and are easily defined produced by the Fraduia variation along the 'I" axis is
by coding the stretching function in the main pro- also defined analytically, namely 8rI8T=
gram. By a proper choice of the function and by (a/2) (T(I - 7)]-' (44b). In response the computa-
letting some parameters (such as d, above) vary as tional grid remains unchanged while the physical grid
functions of the propagation distance according to (and the associated weighting factors) can change
physical needs, the accumulation of points can be appreciably.
obtained where necessary at ay distance of propa- Should one need to study the laser field build-up
gation. In the laser problem, we use a slightly modi- due to initial random noise polarization (for super-
fled stretching function: radiance), or to an initial tapping angle (for super-

U I

I,, 1
T /1 Ji s 1Tso

a b~ ,

arf JLPWNW 'T ______________vwa cmpunaL
Fi. 9. Dependence of prescribed stretching and its derivatives on the point densities and the centre of trnsformation.
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fluorescence), one must utilize a different stretching tion of optical shock waves. The quality of the tern-
[66]. This stretching is similar to the one defined for poral resolution becomes critical. To maintain corn-
treating radial boundary conditions. The mesh points putational accuracy a more sophisticated stretching
are clustered near the beginning (small 7); their den- than that described in section 8 is needed. The accu-
sity decreases as 'r increases. Note that the Fresnel mulation centre of the nonlinear transformation used
number for the super-fluorescence simulation was to stretch the time coordinate should be made to vary
selected to be one [661, in accordance with present along the direction of propagation. This adaptive
experiments. stretching will insure that the redistribution of mesh

points properly matches the shifted pulse (fig. 10).
Here the transformation (42) from 7 to T is

9. Adaptive stretching in time applied about a centre rc which is a function of 17:
a T

As the energy continues to shift back and forth I- = r(1) + -log T. (45)
between the field and the medium, the pulse velocity 2 - T

is modified disproportionately across the beam cross- The stretching factor a could also be a function of 17
section. This retardation/advance phenomenon in (fig. 19b) with
absorber/amplifier can cause energy to fall outside
the temporal window. Furthermore, due to nonlinear 1(07 + A7) = 7(7) + [Tpk(t/) -pk(t/ -A77)] , (46)

dispersion, the various portions of a pulse can propa- where rpk(i7) is determined from the previous plane 17
gate with different velocities, causing pulse compres- as the time at which the electric field on axis is
sion. This temporal narrowing can lead to the forma- maximum. The time delay/advance accumulated in

£ 1O , 15 3 ii s" . '3.T 4 S t 6 C 7 ?.S 9 of IS'

* I Et.. t,.O.93, LOS

I'~. r Noa om O3 -m noufrmt
. : Jl, I"UNSFOWl COe PU'rh? IOWq.7lEl

'II IL

C

*1* \
LA

,4' TL ,10I

/ *\ \

4 .1 S9 & 7 1

* Fig. 10. Adaptive stretching with different centres of transformation.
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thetmval an a

AT -pk(l) - Tpk 7(

.- -measures the velocity of the peak relative to the
speed of light:

/C u/Cl &c(4rl&O + l1. (48)
The equations are very similar to those of section . ......

3, with an extra term added:

,I qJ + ae + ae r i•- da (49) JIITC (49)

The role played by the time coordinate is different.
SPteviously the field equation did not contain an expli-

citly dependent term.

10. Reioning

-The main difficulty in modeling laser propagation
Sthrough inhomogeneous and nonlinear media stems

from the difficulty of preasessing the mutual influ-
ence of the field on the atomic dynamics and the
effect of the induced polarization on the field propa-
gation. Strong beam distortions are expected to occur
based on a perturbational treatment of initial trends.
One must normalize out the critical oscillations to
overcome the economical burden of an extremely
fine mesh size. To isum such accuracy and speed in 1.Tz of the concep mae gid monins; (b) adose-p of the non-untonn mapped Vid of ft. 2b.
the computation, ajudicious choice of coordinate
system and appropriate changes in the dependent
variables, which can either be chosen a priori or auto- sian beam propagating in a vacuum. Using Jogelnik
matically redefined during the computation, must be and Ws notation [30], the Gaussian solution of the
considered (fig. I1) (33-37]. free-space (2 l 0) equation

This procedure removes the necessity for sampling
the high frequency oscillations induced in the phase 21 0.e +.VtDe no (SO)
by self-lensing phenomena. The coordinate transfor- is well known and may be written as:
mation alters the Independent variables and thereby
caumes the dependent variables to take a different (
functional form. The new dependent variables are e(p, 1, T) = a(Q ?), exp 0Q, 'r)
numerically identical to the original physical ampli-
tudes at equivalent points in space and timeL

The requkemnts of spatial rezoning will be satis- - p 1 + .+ , (SI)B fed by simultaneously selecting a coordinate tras- a-(% R (i , %)/J

5' formation (from the original coordinates p and 17 to new where
coordinates I and z) and an appropriate phase and
amplitude transformation. The chosen transformation (n, t) atan(i/ko), (52)
will share the analytical properties of an ideal Gus- a(Q, 7) ao sec (53)
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R(t, r) = 1 cosec . (54) nomical fashion by using larger meshes. They are
numerically treated in an almost identical fashion toThe param eter a is the m easure of the transverse ea d .S r nl o l n a e i e u r ,h w v r

scle,d e and . Strongly nonlinear media require, however,aa more sophisticated approach.

no a(O,"r) (55)

is the width of the initial intensity distribution. The 11. Adaptive rezoning
parameter a shrinks or expands as the beam converges
or diverges. It is logical to require the transverse mesh The foregoing concepts may be generalized by
to vary as a varies. Therefore, the variable repeating the simple coordinate and analytical func-

"a(47, 7) (56) tion transformations along the direction of propaga-
. is introduced (fig. 11). More specifically, stability and tion at each integration step. The feasibility of such

convergence are iaured if the ratio [,/(&,) 2] is automatic rezoning has been demonstrated by Her-

appropriately defined, according to the Fresnel nun- mam and Bradley in their CW analysis of thermal

ber chosen, and kept constant throughout the calcula- blooming [33] and by Moretti in supersonic flow cal-
t ion. culations [28,29].Accordingly, one must introduce a e i In particular, the change of reference wavefront

able z so that this parameter automatically remains technique consists of tracking the actual beam fea-
. constant as p varies. This should increase the density ture and then readjusting the coordinate system. An
•. of 77 planes around the focus of the laser field where adaptation of Hermann and Bradley's technique to a

the irradiance sharply increases in magnitude causng cylindrical geometry is presented herein.

-" a more extensive and severe field-material interaction The new axial coordinate; is defined, as before, as
to occur. This is accomplished by introducing z = actan(71/kao) (61)

z~ -(57) and

and using a constant ar. This has the effect of 34 (l/ke2 ). (62)
making the extent of real space related to the size of
the vacuum beam. Previously, the centre of the transformation where

In terms of I and z the field equation now appears the radial mesh points were most tightly bunched,
was at the focus (z a q , 0). Now the transformation
will be defined in terms of an auxiliary axial variable

58 ~ as a function of z, which is calculated adaptively
*- (2i e - 24(tan z) ate + V17-el - ic, (58) in a way that reflects and compensates the changing

physical situation. The relationship zgz) will be
where c¢ is a constant. defined later in this section.

For the field and polarization envelopes, the vari- The radial coordinate t is then defined similarly as
ables B and S are defined as: I a 1410) (63)

; Cos Z'exp +i ! tan z - (59) with an auxliary axial coordinate z5 different from z.

J [~a o S)x 2 t For stability reasons, (Azt/A 2 ) must be a constant.

4 The quadratic phase and amplitude variation have From

been removed. The new field then takes the form: zt (64)

{ )+-,.this leads to:S {11 2(z)}[2i32B V B (2d-12)B] =lesS. (60)
"9t) = aollcos Zi , (6S)

• " B and S vary more slowly in their functional values
than their predecessor allowing the numerical proce- dt;- o [tan(z + d z) (66)
dure to march the solution forward in a more eco- = ka2It(tan(.:t + dzt) - tan :ti, (67)

L
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wuch gives: plane under consideration is derived from the old

a.. , S2 /ia (68) value by

and also leads to an expression for dzt: z, - arctan(2a + tan zp), (75)

.. an(d)- aran~dz)/(IC + tan(d) with the new neck radius ao,

x (a2tan : -aftan ]. (69) al a os z" (76)
The equation for B is then:

This enables one to find appropriate values for/alt.

ug is then defined by wrting: 21 8xB + i? (V18+(2- e)B 1cja2S (77)

.ag(,z )=a~los~m(:1  . (70) By using thi final differential equation, the new
In this adaptive rezoning scheme, the physical solu. equation varies lts in its functional values than does
tion near the current : plane is described better by a the original.
Gaglan beam of neck radius ago whose focal point is The insiantaneous local parameters a and a of the
a distancezm, away than by an nitially assumed Gaus. quadrati wave front ae determined by fitting the
sian beam with parameters ao and :. With this trans- calculated 0( of Bp to a quartic In Z; a reasonable
formation the field equation (50) in terms of: and approach is that the intensity-weighted square of the
becomes phase gradient:

2 ag + ! M.e - 2Jtan z@e~l - Oiat 2 (71) fB2 ap0.ae + + 0)12 d inium (78)

where * Is the phase of the field variable B - ATo remove the unwanted oscillations, new dependent:. aip(-I*) [791. The minimization of the phase gmi-
.'' variables B and S are introduced by a aGB and - d•, - cient s weighted by the beam Intensity. Conse-

GS, where quetly, the cumure at the highest intensity portion
G a.ailup.+ i (7 of the beam contributes the most.

(72) The following different moment integrals are
introduced

All the values at the end of the previous interval
(n plane) are indicated with a subscript p. The electric M,, =f(tu ) Idt, fn f{Bze2x-')8*} e d
fielda is given in the old representation as eaGpp
and in the now representation as e a GB; where GP is (80)
dependent on z:p and G on z1 , and B s given by using the relation

Bp. -B exp K*[ 2 +0 1tJ')]. (73) aO .-- Irm(a 1 }, (81)
The best match is obtained by requiring that O(B), = -Ia C(B8-n)(

* the phase of B, should vary radially as little as possi- -n _ f a t) } dt, (82)
ble. by taking partial derivatives with respect to the c's

O(B) a Oqp) + O(Gp) - (G) and irs, one obtains

- (Me + r + -) + (2U 2tan ) - )- %-0fa - M',)/E
* .-(11 tan zj), (74) and

where a is the cuveu. 0- W,7, -M:,ri)/E,
* • a and a are determined In a appropriate manner

from Bp so that a new variable B has no curvature. It
is dlear that the new value ofr zat the present new E 2(M - MiM3). (83)

S?
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The distinctive advantage of these stretching and
* adjustable rezoning techniques stems, as suggested by

Moretti, from the fact that they automatically define a
the mapping and all related derivatives analytically.

12. Numerical results

In this section are outlined basic results, obtained
with and without rezoning and stretching, and illus-
trating why the more sophisticated techniques
required less computational effort.

The first part of this investigation Which dealt with
absorbing material led to the discovery of new physi-
cal phenomena which promise to have significant -.

applications for proposed optical communications
systems. It had been shown that spontaneous
focusing can occur in the absence of lenses, and that

* the focusing can be controlled by varying the medium
parameters. The second part of this analysis dealt
with amplifiers.b

The dependence of the propagation characteristic
on the Fresnel number F" associated with an effec-
tive atomic length, on the on-axis input pulse "area",
on the relaxation times and on the off-line centre fre-
quency shift have been studied. Furthermore, partic-
ular care was exercised to ensure a perfectly smooth
Gaussian beam [23,54-59] thereby eliminating any -

possibility of small scale self-focusing build-up
[60-631.

The effect of coherent self-focusing is illustrated in
", fig. 12. The time integrated pulse 'energy' per unit

area is plotted for various values of the transverse Fi. 12. The eery per unit ares le(p, i, r')12 d} the flu-
coordinate, as a function of the propagation distance. racy is displayedas a function of the distance in the direc-

Two orientations are shown to display the energy tion of propagation for various values of the coordinates
redistribution as the laser beam is transmitted in the tranvoes to the direction of propagation. To illustrate the
nonlinear resonant absorber. The necessity of a non- gradual inward energy flow the w12 reorientation is also dis-
uniform mesh is quite evident. Played. The longitudinal orientation Illustrates the graduL

The three-dimensional numerical calatons boosting mechanisn that the field energy experiences u itsflows radiay towards the beam ais (while it increases). The[23, 56-591 substantiate the physical picture based seon enle displays the ov buam distortion in its crow-
on time changes in the phase. It can be perceptually section as a function of q.

visualized in selected frames from a computer movie
simulation of the numerical model output data.

In fig. 13 the isometric plots are drawn against the region; and (d) the post-focal region. While in fig. 14
retarded time for various transverse coordinates at a rotation of isometric plots is displayed to emphasize
four specific regions of the propagation process: the radially dependent delay resulting from the
(a) the reshaping region where the perturbation treat- coherent interaction. Positive values of the transverse
ment holds; (b) the build-up region; (c) the focal energy current correspond to outward flow and nega-

4"
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4 Fig. 13. Isomei Plots of the absou fel &M newg a=d traaswrsa mly flow. agains the retarded time for various trarisvers
cootdinates at four reg&=n: (a) resaping, (b) build-up regin, (c) focal reon, (d) post-focal regin.

tive values to inward flow. The results of the top two cross-section are taking place as a function of the
* graphs in the right and left columns are als in agree. propagating distance. At the launching front, the
4ment with the physical picture related to the analytic beam is smooth and symmetric; as the beam propa-

perturbation discussed elsewhere (23,65 1. gates into the nonlinear resonant medium, the effect
The burn pattern, Iso-irradlance level contours of the nonlinear inertia takes place.

(against r and p) for different propagation distances The general format for presenting thresedimen-
are shown in fig. IS. Sever changes in the beam sional coherent pulse propagation in an amplifying

• .
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iil
Fig. 14. Isometric plots of the absorber field eneWg and transverse eneWg flow proffle for various time slices at the four regions of
interest.

*medium will be the same as for the absorber. regions of propagation and are constrasted with their
In the right hand side of fig. 16 the field energy is profile plotted in the left hand side of fig. 16 for

*displayed isometrically against the retarded time for various instants of time. In fig. 17, one can see from'
various radii at the previously defined five critical the contour energy levels that the peak of the pulse is



Ftg. 15. Absovbet flel eom contour plots forthde four ptopaPtion reps,. of intellft. Notice the tentpotal delay associated
with the coherent exchang, of energy between light and matter, as well as the beum crosection narrowing.
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Fig. 17. Amplifier field energy contour plots for the four propagation regins of interest. Notice the temporal advance associated
* with the coherent exchange of energy between light and matter, as well as the beam crosection narrowinig.

advanced with respect to a frame moving with the figs. 18 to 20. Nonuniform radial stretching was
* velocity of light. It is seen that the smaller area adopted during the computation. Isometrics of the

propagates slower than the larger areas. field energy and the energy current are plotted ver.
The effect of the radial boundary is illustrated in sus rfor different radiiin fig. 18 and versus p for

S Fig. 16. Isometric plots of the amplifier field energy versus the retarded time for various transverse coordinates contrasted to its
* profil for Various time at distinct propagational region.
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FIg. 18. Isometric ots of the anPliner field energy and transvers enerY Bow, agaist the retarded time for various transve
coodinates at four rqgons: (a) reshapiaL (b) build-up region. (c) focal region, (d) post-focal region, with stretched radial coordi-
nat* for proper acmounting of the transvere boundary condition.
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Fig. 19. Isometric plots of the amplifier field energy and transverse energy flow profile for various time dices at the four regions
of interest, with stretched radial coordinate for proper accounting of the transverse boundary condition. No severe reflection or

' abrupt variation in the field energy, at the wal boundary, Is observed.
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interaction with maximum accuracy and minimum The results of this analysis served as a guide to
computational effort. The applicability of computa- real-life, coherent light-matter interaction experi-
tional methods developed in gas and fluid dynamics ments. The equations with radial and phase variations
to the detailed evolution of optical beams in non- included, are implemented using a two-dimensional,
linear media has been demonstrated. By introducing time-dependent, finite-difference computer code with
adaptive stretching and rezoning transformations, the two population densities, an inertial-medium polariza.
calculations improved considerably. tion density and adaptive propagation capabilities.

In particular, self-adjusted rezoning and stretching The importance of dynamic transverse effects,
techniques consisting of repeated applications of the namely, diffraction coupling and a reflecting radial
same basic formula were reviewed as a convenient boundary, in the evolution of both initial ground-
device for generating computational grids for com- state and inverted media with different Fresnel num-
plex nonlinear interactions. The techniques are well. bers, has also been assessed.
suited for easy programming because the mapping Calculations using an Eulerian code predicted and
functions and all related derivatives are defined ana- elucidated an on-resonance, transient, whole-beam,
lytically as much as posmible. Enbeccement of speed self.lensing phenomenon in absorbers. This effect was
and accuracy was realized by improving the integra- subsequently ascertained by experimental observa-
tion technique/algorithm which turned out to be tions in sodium and neon. Conversely, calculations
general and simple in its application compared with concerning amplifiers depicted longitudinal pulse
its analogue, the two-dimensional Lagrangian break-up, which degraded beam quality, as substan-
approach. Furthermore, this method has been applied tiated in high-power laser experiments. Significant
to a number of situations with and without homo- phase modulation and transverse spreading may
geneity in the resonant properties of the atomic me- explain the mechanism that limits the useful output
diun. Note that the theoretical predictions defined of long amplifiers. Parametric computations illus.
with this code, when applied to absorbing media, trated that these self-action phenomena can be con-
were quantitatively ascertained [56,59] by indepen- trolled by tuning the various system parameters.
dent experimental observations in sodium, neon and Accuracy and computational economy are
iodine, respectively [53,55,67], and recent indepen- achieved simultaneously by dynamically redistri-
dent perturbational [60,61,631 and computational buting the computational Eulerian grid points accord-
analysis [621. The design of the first of these experi- ing to the physical requirements of the nonlinear
ments dealing with sodium vapor, was based on interaction. Evenly-spaced computational grids are
qualitative ideas, quantitative analysis and numerical related to variable grids in a physical space by a range
results obtained with the code described in this paper. of stretching and rezoning techniques. This mapping

Although the topic of this paper has been most consists of either an a priori coordinate transforma-
widely received in optical radiation physics, we tion or an adaptive transformation based on the
believe that this methodology, drawn from aero- actual physical solution. Both stretching in time and
dynamics, will prove functional for a wide variety of rezoning in space alleviate the computational effort.
nonlinear time-dependent equations in such fields The propagation problem is then reformulated in
as chemical kinetics and oil reservoir simulations. terms of coordinates that will automatically accom-

modate any change in the beam profile. This attempt

14. Summary permits the construction of a computer code capable
of being physically meaningful at every mode point.

4 The mathematical modeling of the coheent trans. The dynamic grid obtained through self-adjusted
mission of ultra-short optical pulses in a two-level, mapping techniques remn'ves the main disadvantage
atomic gaseous medium, which can sustain ampllfl- of insufficient resolution from which Eulerian codes
cation and/or absorption is presented. The main pur- generally suffer. Furthermore, the advantages of grid
pose was to understand how inertial nonlinearity sensitivity are obtained while circumventing the tradi-
affects the propagation of intense ultra-short light tional impediments associated with the Lagrangian

*J beams. Previously, this effect had been intractable, methods.
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Dynamic diffraction coupling is examined in superfluorescence with use of a semiclas-
sical model in which diffraction and transverse density variations are rigorously in-
cluded. The Cs data are correctly simulated for the first time.

PACS numbers: 42.65.Gv, 32.50.+d

Superfluorescence' (SF) is the process by which will be discussed elsewhere.
coherent emission occurs from an ensemble of Transverse effects are expected to influence
two-level atoms all intially in the upper state. An the pulse shapes in at least two ways, one of
important question in SF experiments is why the which is spatial averaging. In SF experiments
output pulse is sometimes smooth, but at other the initial inversion density no(r) is radially de-
times exhibits multiple structure or ringing. pendent since the pump light pulse typically has a
Strong ringing or pulsing has been observed by Gaussian-like profile.' In the absence of diffrac-
several groups, including the initial HF-gas stud- tion this cylinder can be thought of as a set of con-
ies. 2 Recent Cs experiments, 3 however, never centric cylindrical shells, each with its own den-
show ringing at low densities, whereas at higher sity. tipping angle, and delay time.8 The radia-
densities, highly fluctuating multiple pulsing is tion will be a sum of plane-wave intensities;
usually observed, and is believed to arise from when the entire output signal is viewed the ring-
transverse-mode competition. Strong Burnham- ing averages out, resulting in an asymmetric
Chiao ringing4 is predicted by plane-wave models s  pulse with a long tail.9

which neglect var-iItions transverse to the propa- A second transverse effect, diffraction, causes
gation direction. We find that inclusion of, trans- light emitted by one shell to affect the emission
verse effects, both spatial averaging and Lapla- from adjacent shells. This coupling mechanism,

I cian diffraction, substantially alters the one-di- which causes transverse energy flow, is more
mensional Cs predictions,sb leading to greater important for samples with small Fresnel num-
conformity with the Cs data. bers F.

The initial SF state is prepared by rapidly in- SF is inherently a transverse-effect problem
verting a sample of three-level atoms by trans- even for large-F samples since the off-axis
ferrtng population from the ground state to the modes are not discriminated against. This work

4 upper state with a short light pulse, creating a is the first to correctly include this crucial ele-
cylindrical region of excited atoms. 2 SF pulse ment.
emission subsequently occurs between this ex- Our analysis adopts the coupled Maxwell-Schr6-
cited state and the intermediate state. There is dinger equations, which fully take into account
no optical cavity and stray feedback is negligible, propagation and transverse effects. Previous

This study employs the semiclassical approach approaches examined transverse effects in the
4 to explore the influence of transverse effects, mean-field approximation'0 or included a loss

using the average value6 of the initial tipping an- term in the Maxwell equation to describe diffrac-
gle. 4

,- Both longitudinal fluctuations6 and trans- tion.2" Thus our model possesses a long sought
verse flucutations, as influenced by diffraction, for degree of realism."

"0 1981 The American Physical Society 1123
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The simulations are based upon an extension of rounded by an absorbing shell.
a model"2 which describes transverse effects ob- Equations (1) are numerically integrated sub-
served in self-induced transparency experiments. 3  ject to the initial conditions n =no cos 0, and 6>
For simplicity the influence of the backward = un, sin Oo, which correspond to an initial tipping
wave, which is negligible, ' 4 is not considered, angle 0o. The initial inversion density in the ex-
and cylindrical symmetry is assumed. The equa- periment is radially dependent; r dependence of
tions of motion are12  X and/or 0o is allowed for in the computations.

1k(.=(411/X)6, (la) Figure l(a) displays results where spatial av-
eraging is present but diffraction is absent, by

861/87+& /T2 =( 2/))n4, (ib) setting F='.o in Eq. (la). In this figure the emit-
On/STX/T, =-Re(& * /ft), (ic) ted power of SF pulses is plotted for samples

with uniform and Gaussian profiles of no(r) and
where 4 and 61 are the slowly varying complex 0o(r). First, we study ringing reduction due to
amplitudes of the electric field and polarization, spatial averaging of independent concentric shells,
respectively, n is the inversion density, T'= t- z each emitting in a plane-wave fashion. The case
c is the retarded time, ji is the transition dipole in which 6, and no are both constant (curve i), the
moment matrix element, and T, and T2 are the uniform plane-wave limit, exhibits strong ring-
population relaxation and polarization dephasing ing. 4*5 In curve ii, in which no is Gaussian { 0(r)
times. Diffraction is taken into account by the =n 0

0exp[ - ln2(r/r,)2]} and 0, is uniform, the
Laplacian term V 2=(1/pX8/8p)p84/8p, where ringing is largely averaged out, resulting in an
p = r/r,. with Fresnel number F = wr,2 /AL. r, is asymmetric pulse with a tail. An essentially

- the radius of the initial inversion density at half identical result (curve iii) is obtained for the
maximum, and L is the sample length. The case in which no and 0, are both Gaussian { e0 = goo

- boundary conditions are 8 /8r =0 on the axis (r x exp[O.51n2(r/r,)]}, showing that the ringing is
=0) and at r=-. To insure that (1) the entire predominantly removed by a Gaussian no regard-
field is accurately simulated, (2) no artificial re- less of the radial dependence of 0o. This is ex-
flections are introduced at the numerical bound- pected, since the output-pulse parameters are
ary .r,>,>, and (3) fine diffraction variations all dependent only on I ln00o . As shown in Fig.
near the axis are resolved, the sample cross sec- 1(b), with uniform no and 0, but with diffraction
tion is divided into nonuniform cells, and is sur- included, the output pulse is almost symmetrical

(0) (b)

iil0noGouimo, F W.0 -

66 " j' uniform F,04 ....

ii)n."00.G usvn - F-0.6

N I

!"r 11 0 50 100 T5_0

FIG. 1. (a) Normalized SF output power vs T/TR, f7,=iX/4,rMPn,,OL = irT/3nooL. (TA is the same as that defined

in Ref. Sa. It appears smaller by a factor of 3 because it uses the "partial" radiative lifetime r0 instead of the ob-

served one, T.) 80
0 =2x 10"-, T, T2=T2* =-, L/crh=3.9, and F =0 (see text). (b) Same as (a) but with diffrac-

tion Included and uniform no(r) and 6
0(r).
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(a) (b)

F II- I-

F-1.0 ---

~W

F-04

W i ---

-.- I..

o 50 10 150

F/TR

t4i:

FIG. 2. Influence of diffraction on SF pulse shapes. Parameters are t he same as in Fig. 1(a), with n0 Gaussian
* and 90 uniform. (a) Emitted power; (b) isometric graph of intensity for the F=1 case of (a).

and also nearly free of ringing for F a 0.4. tios of our computed densities to the experimen-
Figure 2(a) studies the effect of diffraction on tal ones range from 1.2 to 2.2, compared with the

the SF pulse shapes by varying F, with use of a + 601[, - 40% quoted experimental uncertainties.
Gaussian a0 as In Fig. 1(a), curve ii. Reducing F The quantum calculations6 actually yield 0o=(2/
curtails the oscillatory structure and makes the vN)[ln(.N)1/S]1/2, a 9% correction which further
output pulses more symmetrical, since the outer reduces the range to 1.14-2.0. If one sets 0o=6/
portions of the gain cylinder are stimulated to , as suggested by the small injection experi-
emit earlier because of diffraction from the inner

*!. portions. Thus diffraction becomes more impor-
*-" tant as F decreases. - (- .. f"..., -.. (--

Figure 2(b) is an isometric graph of the inten- I!" sity buildup for a sample with F = 1. The radial ter

0

variations of intensity peaks, delay, and ringing ] exper'iment-...
. illustrate how different gain shells contribute in- m-i_

dependently to the net power. Each shell exhibits ;(i i

a different Burnham-Chiao ringing pattern. Ac- ....... . ,_ --
cordingly, their contributions to the net signal 0 ,(c) (d)

S interfere and reduce the ringing. However, the W - her--F central portion of the output pulse should exhibit - F ,

strong plane-wave ringing. In fact, the ringing o
hobserved In the HF-gas experimentsa may haveu r,

been just that, since the detector viewed a small a,
area in the near field of the beam . the "n

Figre3 cmpre th nrmaizd s S dta 0 O 20 30 40 0 10 203 0 40
porigure 3hu comp atonoTIME (ns) TIME (ns
Of Refs. 3 and nlb (for which F0.7 with uncer-
tainty ranging from 0.35 to 1.4) to the theory (in- FIG. 3. Theoretical fits to C data of Ref. 3. The
cluding relaxation terms). The data were fitted two dashed-line curves in (a) indicate typical expert-
with use of a Gaussian te and a uniform Bo with mental shot-to-shot variations. F 1, L = 2 c, T

nominal value 6 
0 =2(n0olr,2L)/2, a0

0 being adjust- =f 70 ns, T, 80 ns, A 2.931 pm, r"0 = 551 us, 00 Is
41 ed to yield the observed delays (1.6-2.8 times the uniform or Gaussian, and n0(r) is Gaussian. The

following give 0 0°(flt), n 0 °(fit), ,,0
0 (exp), with 00 inexperimental no values). However, in Ref. 3 the its of 1" 1cm and 0in units of 100/cm': (a) 1.07,

curve published at each density was the one with 31, 19; (b) 1.37, 18, 7.6; (c) 1.69, 11.9, 3.8; (d) 1.96,
the shortest delay. The average delay is -30% 8.85, 3.1. The broken-line curve in rn) is the one-
greater at each density.' Thus the effective ra- dimensional fit of Ref. 3b, with 000 = 1.69 and n 0 -12.
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By adapting Moretti's self-consistent numerical approach to integrating the Euler equation of compressible flow, a uni-
fied complete temporal and spatial description of superfluorescence and optical bi-stability was undertaken. (The simula-

tion includes material initialization as well as refractive transverse and longitudinal field boundary conditions appropriate to
the cylindrical laser cavity). The respecting of physical causality in Moretti's method was maintained; but by using an
improved de4"ative estimator at both the predictor and corrector levels, the overall accuracy was improved.

The physical model includes nonplanar two-way Maxwell-Bloch propagation with spontaneous sources. The problem
*of dynamic transverse effects as they relate to soliton collisions is addressed. The calculations are based upon an extension

of Mattar's previous semi-classical model for diffraction and phase effects in self-induced transparency at thick optical
absorptions.

The computational algorithm relies on th use of characteristics, but is strictly a finite-difference scheme. This explicit
scheme involves the simultaneous integration along the time 3ordinate for both forward and backward wave. However,
directional derivatives must be considered to appropriately takc into account the mutual influence of the two light beams
without violating the laws of forbidden signals. Particular case is exercis.-d to mintain at least a second-order accuracy
using one-sided approximations to spatial derivatives. Each forwa;djackward field derivative will be related to its respec-
tive directional history. A numerical approach in which the discretization is not consistent with these physical facts will
inevitably fail. Thus the numerical algorithm must discriminate between different domains of dependence of different
physical parameters.

The physical process can now be analyzed with a degree of realism not previously attainable. Significant agreement
with experimental observations is reported from the planar or time-independent analysis counterpart confined to the cen-
tral portion of the beam.

I. Introduction

The modelling of longitudinal and transverse coherent pulse reshaping that occurs when forward- and backward-
travelling beams interact coherently with a medium resonant to the pulse-carrier frequency and with each other is
presented. The physical system is characterized by a pulse duration much shorter than all the atomic relaxation
lifetimes and dephasing times. In addition, the field is large enough so that significant exchange of energy between
the light pulse and- matter takes place in a time that is short compared to a relaxation time.

The response of the resonant medium is not instantaneous but cumulative (i.e., it is associated with the past
history of the applied field). Hence, the inertial response of the medium is not describlable in terms of an intensity-
dependent susceptibility. Instead it necessitates a more general functional of the applied field. The treatment dif-
fers from earlier theoretical and experimental studies where a rate-equation approximation was considered. Conse-
quently, a semiclassical formulism, similar to the one used by McCall and Hahn [1] in their analysis of self-induced
transparency, must be adopted. The physical model is based on counter-propagating travelling-wave equations,
derived from Maxwell's equations including transverse [2,31 and transient phase variation [41, and a two-model

Work supported in part by the Research Corporation, the Army Research Office, the Office of Naval Research and the Interna-
tional Division of Mobil.
The concept of this analysis was proposed at ICO-I 1 Madrid (September 1978) ed. J. Buescos, Proc. distributed by the Spanish
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[5,61 version of the Bloch's [71 equations describing a distribution of two-level homogeneously broadened atomic
systems. Furthermore, the simplifying mean-field approximation is not considered; instead, an exact numerical
approach that adapts computational methodologies gained in solving fluid dynamics problems is developed.

In the slowing-varying-envelope approximation, both the phase and amplitude variations of a linearly -polarized
field in the transverse direction are described by two scalar wave equations, one for each mode: forward-t ravelling
propagation. Each equation is driven by the appropriate polarization associated with the nonlinear inertial response
of the active medium. The dynamic crosscoupling of the two waves appears explictly in the two-mode analogue of
the traditional single-mode Bloch's equations describing the material system. The presence of the longitudinal
mirrors will further enhance the mutual influence of the two beams. Variations in polarization and population over
wavelength distances are treated by means of expansions in spatial Fourier series. The Fourier series are truncated
after the third or fifth harmonic. As McCall [61 and Fleck [5] outlined it, the number of terms needed is influ-
enced by the relative strength of the two crossing beams and the importance of pumping and relaxation processes
in restoring depleted population differences.

Counter-propagational studies have been previously considered for pulses with infinite transverse extent (i.e.,
uniform planes) by Marburger and Felber [8] in connection with nonresonant nonlinearities. Two-mode one-
dimensional analysis involving resonant interactions have been tackled by McCall [5]1, Fleck [6]1, Saunder and
Bullough [91, and more recently by Eberly, Whitney and Konopnicki [10]. However, restrictive assumptions were

* made relating to the allowed form of the temporal field variations. Since the experimental arrangements often do
not satisfy the uniform plane-wave condition, the detailed nature of transverse behavior (using rigorous Laplacian

* coupling) must be worked out. This present three-dimensional treatment assumes azimuthal cylindrical symmetry.
Furthermore, the interplay of diffraction coupling (through the Laplacian term), and the medium response

will inevitably redistribute the beam energy spatially and temporally 111-141.- This transient two-stream beam
reshaping profoundly affects a device that relies on this nonlinear light-matter interaction effect. Several phy-
sical effects such as strong self-phase modulation, spectral broadening, self-steepening and self-focusing that have
been separately studied, combine here to affect the behavior diversely during different positions and times of
the pulse evolution. Due to the essential complexity of the governing equations of motion, only effective nume-
rical methods which are consistent with the physics can make attainable a heretofore unachievable solution.

An extension of an efficient numerical approach [15-17] was developed by Mattar to study the transverse
energy flow associated with beam variations in the single mode SIT problem. The latter code, which simulates
the rigorous interplay of diffraction (Laplacian term) and the inertial two-level atom (Bloch equation) response,
had led to the discovery of a new transient on-resonance self-lensing phenomenon which was subsequently veri-
fied in sodium [181, neon [191 and more recently in iodine [201 vapour in laboratory experiments. Accurate
comparison over a wide domain of physical dependencies was reported [21]. Consequently, the numerics of
diffraction and Bloch equations will only be briefly outlined.

In the standing-wave problem, the two waves are integrated simultaneously along t the physical time: no retar-
ded time [221 (or Galilean) transformation as in SIT will be introduced.

To ensure proper handling of the two-stream effect, special attention must be exercised. For causality reasons,
as advanced by Moretti [23], only directional resolution for spatial derivatives of each stream (forward arnd back-

* ward field) must be sought. This is achieved by using one-sided discretization techniques. The forward field deri-
vative will be approximated by a different set of points than those used for the backward field derivative. The
spatial derivative of the forward field is discretized using points which lie to the left as all preceding forward waves
have propagated in the same left-right direction. The backward field is approximated by points positioned to the
right. As a result, each characteristic (information carrier) is related to its respective directive history. Thus, viola-
tion of the law of forbidden signals is prevented.

Once the basic effects are observed and assessed using straightforward orthogonal computational meshes, non-
uniform grids which alleviate the calculational effort [24-28], will be implemented. (The nonuniform grid per-
mits greater point concentrations in the temporal and spatial regions of main interest.)

The prime goals of this study are to achieve an understanding of beam effects in soliton collision 1291 , and to

0.
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relate this situation to the single stream SIT problem and to observations in super-fluorescence [30-33] and
optical bi-stability [34,35] experiments. Furthermore, one readily investigates the dependence of the counter-pro-
pagation transmission characteristics on pulse and beam shape, on the relaxation times, the resonance frequency
offset, the input pulse area(s) on-axis and, the Fresnel number, the mirror reflectivity, the initial tipping angle.
The outline of this paper is as follows: in section 2 are the standing-wave Maxwell-Bloch equations and the initial
and boundary condition. Section 3 presents the law of forbidden signals. The accuracy of the predictor/corrector
scheme is presented in section 4. The effect of improving the derivative estimator on the overall numerical scheme
is described in section 5, while section 6 presents the theory of approximating linear operators. In section 7, three-
point estimator formulae for the first derivative of a function are derived. Section 8 describes the treatment of
the longitudinal boundary condition. Section 9 presents the three-point estimate as an example for the four-point
estimator for the Laplacian of a function. Section 10 concludes the paper.

2. Equation of motion

In the slowly-varying-envelope approximation, the dimensionless field-matter equations are:
' ae 8e*

-- + - = g+(P exp(-ikz)) , (2.1)
ai 3Z

-i e* ee + T -= g-(P g ,exp(+ikz)), (2.2)

with g and g- the nonuniform gain associated to the pump experienced by the forward (e+) and backward (e-)
travelling wave. The quantities in the r.h.s. undergo rapid spatial variations; ( ) represents the spatial average of
these quantities over a period of half a wavelength

B-+ (-i(Al) + r'2 )P = + W(e+ + e-)}, (2.3)

!: aw
w+ 7T't(We - W)= -(P + P-)(e+ + e-). (2.4)

Equivalently
aPT + (-i(Afl) + ri )P= W[e exp(-ikz) + e- exp(+ikz)] , (2.5)

+ rT(W e 
- W) =-(Pe " exp(ikz) + Pe-* exp(-ikz) + c.c.) (2.6)

with

e' = (2grp/,u) e' (2.7)

P =(P'/2u), (2.8)

E Re {e' exp[i(wt T kz)] (2.9)

and

P =Re {ip' exp(iwt)}. (2.10)

The complex field amplitude e', the complex polarization density P' and the energy stored per atom are func-
4
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tions of the transverse coordinate

p = r/rp, (2.11)

the longitudinal coordinate

Z = C(2.12)

* iand the physical time

- = t/p. (2.13)
The time scale is normalized to a characteristic time of the forward input pulse rP, and the transverse dimension

scales to a characteristic spatial width rp of the forward input transient beam. The longitudinal distance is norma-
lized to the effective absorption length [37].

&ef = 87rwo 2Nrp/nhc. (2.14)

In this expression w is the angular carrier frequency of the optical pulse, p is the dipole moment of the resonant

*. transition, N is the number density of resonant molecules and can sustain radial variations, and n is the index of
refraction of the background material. The dimensionless quantities

WO= ( - wo) 7P, (2.15)

1= Ti/rn , (2.16)

r= T2 /r7, (2.17)

measure the offset of the optical carrier frequency w from the central frequency of the molecular resonance Wo,
the thermal relaxation time TI, and the polarization dephasing relaxation time T2 , respectively. The dimension-
less parameter F (which is the gain to loss ratio) is given by

eFf= Xa-/41rr2 (2.18)

and is the reciprocal of the Fresnel number associated with an aperture of radius rp and a propagation distance
(cef). The magnitude of F determines whether or not it is possible to divide up the transverse dependences of
the fields into "pencils" (one pencil for each radius) which may be treated in the plane-wave approximation.
The diffraction coupling term and the nonlinear interaction terms alternately dominate depending on whether
F< 1 orF> 1.

The presence of opposing waves leads to a quasi-standing wave pattern in the field intensity over a half wave-
length. To effectively deal with this numerical difficulty, one decouples the material variables using Fourier

*series [5,61 namely

" • P = exp(-ikz) F P,' exp(-i2pkz) + exp(+ikz) F P-p1 l exp(+i2pkz), (2.19)
P = "2p p =O

W= Wo + [W 2p exp(-i2pkz) + c.c.] , (2.20)
p=l

with Wo a real number. By substituting in the travelling equation of motion one obtains

aP + Pit/r2 = Woe + W2 e- , (2.22)

"aP3+ + P3/r = W2e+ + W4 e , (2.23)

p
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arP 2 p+ 1) + P 2p+ l)/r 2  W 2pe
+ + W2 (,+t) e and (2.24)

' aPj / + P/r2 = W e + We + , (2.25)

P+ '/2 = e- + W*e+ , (2.26)

aTP p+,) +P( +)/r 2  = W* e- + W(p+[)e , (2.27)

al wo +(Wo - Woe)/7, =-(e-*P" +e+'P + c.c.), (2.28)
arw2 + W2/71 -(e-'P + e+P + eP- + e-P ), (2.29)

aW 2p + W2p/7,I - (e-P+ + e+P2+, + e+Pi; , + eP-'i 1). (2.30)

The field propagation and atomic dynamic equation are subjected to the following initial and boundary condi-
tions.

* 1. Initial

For r 0,

e = , (2.31)

WO = Wo , (2.32)

. a known function to take into account the pumping effects. For SIT soliton collision

P(t,+1 ) = 0, for allp, (2.33)

* while for the superfluorescence problem

(2p+1)  (2.34)

* is defined in terms of a non-uniform initial tipping angle that reflects the radial variations of the atomic density -
its value can either be deterministic or fluctuating.

2. Longitudinal

For z = 0 and z = L: e and e- are given in terms of a known incident function

elo (2.35)

and

e l. (2.36)

of r and p. Should enclosing mirrors to delineate the cavity be considered in the analysis, one must deal with the
following longitudinal boundary equations

e+ = */I -R ) e1o + - e , atz=0, (2.37)

e = l(1 -R 2 )ell + V.R 2 e , atz=L , (2.38)

where R1, R 2 and (I - R1 ), (1 - R2 ) are the respective reflectivity and transmitting factor associated with each
left and right mirror.

3. Transverse

For all z and r [ae±/ap]#=o and [ae*/ap] p=pm. vanishes. Pm, defines the extent of the region over which
the numerical solution is to be determined. To avoid unphysical reflection from the transverse boundary, one
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must, for amplifier calculations, use stretched (nonuniform) radial grids (i.e., consider a quasi-infinite physical
domain and map it on a finite computation region) and confine the pre-excited active medium by radially-
dependent absorbing shells [171. Note that this condition represents an actual experimental approach in which the
laser amplifier is coated to circumvent any spurious reflections.

3. The law of forbidden signals

The concept of the physical law of forbidden signals and how it affects two-stream flow discretization prob-
lems was originally written by Moretti to handle the numerical integration of Euler equations. The method,
referred to as the X-scheme, was presented elsewhere [38]. However, since it represents the basis of our present
algorithm, we felt useful to summarize here its salient features.

In any problem involving wave propagation, the equations describe the physical fact that any point at a given
time is affected by signals sent to it by other points at previous times. Such signals travel along lines which are
known as the 'characteristics' of the equations.

For example, a point such as A in fig. 1 is affected by signals emanating from B (forward wave) and from C
(backward wave), while point A' will be the recipient of signals launched from A and D.

Similar wave trajectories appear in our present problem, but the slopes of the lines can change in space and
time.

It is clear that the slopes of the two characteristics which carry the information necessary to define the for-
ward and backward propagating variables at every point, are of different signs; they X1.2 , are numerically equal
to ±c/n. For such a point, A (fig. 2), the domain of dependence is defined by point B and point C, the two cha-
racteristics being defined by AC and AB, respectively, to a first degree of accuracy. When discretizing the partial
differential equations for computational purposes, point A must be made dependent on points distributed on a
segment which brackets BC, for example on points D, E and F of fig. 2. Such a condition is necessary for stability
but it must be loosely interpreted. Suppose, indeed, that one uses a scheme in which a point such as A is always
made to depend on D, E and F, indiscriminately (this is what happens in most of the schemes currently used,
including the MacCormack method). Suppose, now, that the physical domain of dependence of A is the segment
BC of fig. 3. The information carried to A from F is not only unnecessary, it is also untrue. Consequently, the
numerical scheme, while not violating the CFL stability rule, would violate the law of forbidden signals. Physic-
ally, it would be much better to use information from D and E to define A, even if this implied lowering the nomi-
nal degree of accuracy of the scheme. In other words, to say that a given scheme, using points D, E and F, has a
second-order accuracy is meaningless since a wrong scheme has no accuracy whatsoever.

In two-wave propagation problems treated by relaxation methods, the need for a switching of the discretization
scheme in passing from forward (advanced) to backward (retarded) points is evidently related to the law of for-
bidden signals.

The sensitivity of results to the numerical domain of dependence as related to the physical domain of depen-
dence explains why computations which use integration schemes such as MacCormack's [40,411 show a progres-
sive deterioration as the AC line of fig. 2 becomes parallel to the T-axis (X - 0), even if X, is still negative [38].
The information from F actually does not reach A; in a coarse mesh, such information may be drastically diffe.
rent from the actual values (from C) which affect A. On the other hand, since the CFL rules must be satisfied and

T A' A

C D Z a E C F Z
*Fig. 1. Fig. 2.
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Fig. 3. Fig. 4.

F is the nearest point to C on its right, the weight of such information should be minimized. Moretti's X,-scheme,
relying simultaneously on the two field equations. provides us with such a possibility.

Every spatial derivative of the forward field is approximated by using points which lie on the same side of E
as C, and every derivative of the backward scattered field is approximated by using points which lie on the same
side of E as B. By doing so, not only is each characteristic related with information which is only found on the
same side of A from which the characteristic proceeds, but such information is appropriately weighted with factors.
These depend on the slopes of the characteristic so that the contribution of points located too far outside the phy-
sical domain of dependence is minimized. A one-level scheme which defines

ae4 laz = (e' - e')lAz , (forward wave), (3.1)

ae-/az = (eF - eE)/Az , (backward wave), (3.2)

is Gordon's scheme [42], accurate to first order. To obtain a scheme with second-order accuracy, Moretti con-
sidered two levels, in a manner very similar to MacCormack's [401. More points, as in fig. 4, must be introduced.
At the predictor level following Moretti's scheme one defines

a / 'az = (2e' -3e' +e)/Az , (forward wave) , (3.3)

aW-/az = (e - e)/Az , (backward wave). (3.4)

* At the corrector level, one defines

ai + az = (2 - F)/Az , (forward wave) (3.5)

and

ai-/az = (-2 .+ 3i t j + -)Az . (3.6)

It is easy to see that, if any function f is updated as

f =f+f AT (3.7)

at the predictor level, with the T-derivatives defined as in (2.21) and the z-derivatives defined as in (3.3), (3.4) and
* as

f(T+ AT) = 1(f+ +fTAT) (3.8)

at the corrector level, with the T-derivatives defined again as in (2. 1 ), (2.2), and the z-derivatives defined as in (3.5),
(3.6), the value off at T + AT is obtained with second-order accuracy. The updating rule (3.7) and (3.8) are the
same as in the MacCormack scheme.

At the risk of increasing the domain of dependence, but with the goal of modularising the algorithm, we have
used three- and four-point estimators for each first and second derivative, respectively. We have also extended

*.  Moretti's algorithm to a nonuniform mesh to handle the longitudinal refractive (left and right) mirrors: the same
one-sided differencing (to satisfy the law of causality) is used for both predictor and corrector steps. Neverthe-
less, we derived, using the theory of estimation, conveniently presented by Hamming [431, second order deriva-
tive estimators at both the predictor and corrector levels. As a result, the overall accuracy of Moretti's scheme
was increased.

4.
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4. Order of error for straight-line predictor/corrector

We consider the following predictor/corrector scheme as suggested by MacCormack

predict: fn+ = fn + 67', (4.1)

correct: A+ = f +f + 6f,+1 ) (4.2)

where f indicates predicted,f corrected and f exact values. Assume that the derivative estimator for prediction
has an error of order p and that for correction of order c, so that:

+ 0(5p)  (4.3)

f+ 1 =A +t +O(6c) (4.4)

where 0(6') is a sum involving terms in 6 to the power i or higher. Combining (4.1) with (4.3) and (4.2) with
(4.4) we get:

predict: fn+ I =fn + 6f, + 0(6P + ), (4.5)

correct: n+, +fn +6 , +0(6c+1 )] . (4.6)

The Taylor series expansion forfn.i is:

+I _fn+6f"+kjf + 0(63). (4.7)

Combining (4.7) and (4.5) we get the predictor error Zn+ as follows:

62
. + I + , +I fn + f + o(6)fn 6f I+ O(6P+1)

+ 0(SP+I ). (4.8)

Thus

"n+l =0(62), for allp > 1 . (4.9)

Consider now the corrector error:

E., 62 6 2

)S+ fn+ fi n +(6f)- 2Jn+I -f'-jc+ I
If (/n f ) 2 - If + f2~fn+C,~If+i)6+ i~f +5f O(6P l)] 0(6C l)

2

=(Jn- 6 +fn 62 +0(6c+,)+0(6p+,). (4.10)

But
fn+t =fn;+  6f ,n' + O(00 ) (4.11)

Thus

(fn-f.. 1)a= ._2 '+0(6). (4.12)2
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Whence

en + 1 0 (8  + 0 (6
+ )+ 0 (5p ) (4.13)

. or

* " n+l = O(Smin(3'C4t'P+1)) (4.14)

Thus the order of error for the predictor/corrector is the minimum of 3, c + I and p + 1. If c 2 and p = 2, their

Table I
Comparison table between weighting coefficients for derivative estimators using Hamming's estimation theory and Moretti's law
of forbidden signals

Hamming: j, =f, +0(62)_-7n =fn + 0(62)

Moretti: , 6 +O(62)f , = - 6 +0(62)2 2

Moretti Hamming

Predictor
-p fnl.

fn,, + LW n 2 + 0(S 3) ?+=fn +6f,+ 0(6 3 )
2"8

fn+=fn +f,+ - 6+o(63 )

2fn+i _fn+I __62 + 0(63)A + 2 2

A+i fn+ i = 2f62 + 0163)

Corrector

f,,+ ="(fn+t +f,;+,+) fn+, -f fn +g + 0(6 3 )

7.,/ =/+-f',+-+ °(63) + Wn. +-f,+1 + o(6s)

6 +f - 62+0(63)
2-4.- 6f.-." +0 (62)

2
*~5 6f2 +063 +(~ (f+~~6  +o

fn I -= -I=If + -f +- ' +'+o(n + 1 + OW
(41 2) 2 2 22

"- but - 6A
+ =+f-f + 1f, + () =

22

,.

= f 6+ n 52 + (63 )

( . 4

.-
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second-order errors effectively cancel out. From the above, it is clear that for maximum accuracy with the
straight-ine predictor/corrector, the derivative estimators for both prediction and correction should guarantee
at least second-order accuracy. Anything above second-order accuracy, however, will not necessarily improve
the results.

S. The effect of prediction error on correction error for a weighted formula estimator of the correction derivative

We investigate derivative estimator formulae of the type:

f = ra C' fUsi). (.l
Ii

Let 6 = maxj(Ixi+I - xi1) and assume

f4 = f, + 0(S C), (5.2)

so that (5.1) has error c.
In applying a straight-line predictor/corrector with such an estimator for the corrector, we observe that the

error in the estimated corrector derivative, since it based on predicted values, will also depend on the error of
prediction. From (4.9) we know that the error in predicted values is 0(52) for any reasonable derivative estima-
tor. Thus we may write:

+l(xn) I (X,) + 0(6 2 ) . (5.3)

Applying formula (5.1) to (5.3) we get:

f iCfn+(x,)= aif +1 (x,) + 0(8 2). (5.4)

Thus, using (5.2):

fn+ =n+ + + (5)+O( 2) = n+, I o(mn(, 2)). (5.5)

Therefore the effective error of the corrected derivative cannot be increased beyond 2 for a straight-line correc-
tor. It makes no sense to use a formula of type (5.1) with c > 2. From the theory of estimation, conveniently
presented by Hamming [431, this means that only three weighting factors at, 02 , a3 need be used. See table 1
for comparison between weighting coefficients.

0

6. Approximating linear operators

Let 3 = (xI, x 2, x3 , . Xm), xi <x i for i */. Consider the function f and let 1x) and W be the column vectors

FO == iX3) [W: (6.1)J '  IV-- '(.)

* Let L be a linear operator. We seek a vector W such that:

f-- ) + 0(8m)
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where 6 = max i (Ixi+ - x I), i = 1, ..., m - 1. We approximate f by a polynomial P" of order m - I which agrees,
exactly with fat points x,X 2,X3, ... ,Xm:

P.(x) =F Lim(X)f(xi) , (6.2)
i = t

where Lim are the Lagrange polynomials for x. It can easily be shown that

f(x) = Pf(x) + R(f, 7;x) , (6.4)

where the remainder term R(f, X;x) is

,(m)(o) -R(f, X; x)-fm(0 = 1 (x - xi) < 0(6' ) ,(6.5)
M! i=1

for some 0: x, < 0 <xm. Let Xii be the coefficients of Li.. so that

mr-I

Lim() = F X Xix 1 , (6.6)
," i=0

yielding

m m-I

" f(x) E . xi) E Xx i + R(f, X; x) . (6.7)
j=I i=0

* Applying L to both sides of(3.7), we get

m M-I

Lf(x)= 2 f(xi)F3  X 1 Lx'+LRfX-.x). (6.8)

Define the column vector Mm as:

1 Mm (X) = X2,

and let Am(X) be the matrix of coefficients of the Lagrange polynomials on X. Then (6.8) may be rewritten as:

4, * LJ()=(Am(X) LMm(X))T .f(Y)+LR(f, X;x), (6.9)

where superscript T represents the matrix transpose operations. We propose the vector

W = Am(X) • LMm(X) (6.10)

* as our weighting vector. Note that this vector is independent of the function f.
Eq. (6.9) represents a formula for estimating a linear operation on a function given the function's values at a set

of points. Unfortunately, little can be said at this point about the error term LR(f X, x) for arbitrary L. Let us
concentrate our attention now on derivative operators. In this case:

dR ) d f))(0) m-'dx ;)dx m =

n Sm 'ml ln n m W '- "" , ,--,,,.-L aL .



12FP Mattar et a. /Counter-beam propagation in a cavity

;m

- ~ ~ F -i+~)~ (xi

M+~ OI(x -x) + fm)(e) (x xjZ rn - 1 11 (6.11)

since 0 is in general a function of x. Let us further restrict ourselves to cases where x =Xk for some k. If we assume
that f'(m((Xk)),f'm+I)(O(Xk)) and (dO/dx) x~~k are defined, then the first term above cancels yielding

d rn-If 1 (6.12)1
R( X;X)Ixzxk = ~XJ[H1 (xk -Xd+ 2 HJ1(Xk - d(.2

dxM! i=2 j=1 i=1

If k =1, then all the terms under the summuation sign will vanish yielding:

,(m

=p ' ((x 1 )) (x 1 -x1  
(6.13)

"- =rn ( f,i= M! i=

d mU = (x) H ( ) - x --. (6.14)

M! k*-=1

The absolute value of this error term is clearly res t Thus if m is the order of approximation of formula
(5.7), then m - I is the order of approximation of formula (5.9) for the first derivative operator. Similarly, it can
be shown under suitable conditions on w(x) and v an(i(x)) that

R(, X;x)I 'O(sm-n) (6.15)

! i " - Rxn X=xk m

7. A three point estimator formula for the first derivative of a function

From the results of section 6, we know that a three point formula of type 6.9 should yield an error of order
2. To define the Lagrange coefficient matrix, define the fundamental polynomials as:

3

*i #(x) = H (x-xi). (7.1)
=... /= 11

Then the three point Lagrange coefficient matrix is

x2x3  -x2 - x3  1

* 0A 3 
=  xx 3  -x -x 3  1 (7.2)

1r2 x2) r2 (x2 ) i2 (x2 )

X1X2  -X 1 - x 2  1

n,3(x3) ir3(x3) r3(x3)

Let DI, D2 and D3 be the weighting vectors of formula (6.10) for the derivative at pointsxj, x2 and X3 , respec-
tively. Since

d M 3 W 
(7.3)
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we have

d r (0T (X,
!-f(x)IX= [A 3  1 f X2 (7.4)

S- (.2rX) xJ

or

Di = A3-x, (7.5)

which yields the forward, central and backward differencing estimators, respectively,

_______ I 2- X 1 - X3  X1 -X 2\
D, = (2 3 - 2  x3  -x x- -x 2- (7.6)

--. I( ) ' r2 (X2 ) ' ,' 3(x 3))'

D 2 X -- X 2 - I-, , ,X 3, X 2 - X I ( 7 .7 )
.x3 - X2 X3 - X1 2X3 - XI -X2(7)

To simplify the expressions, we introduce the following

61 x 2 -xI , 62 x 3 -x 2  6=1(X3 -XI)=(6 1 +62), (7.9)

PI =( ) i 2 ,o+I, P2=' -L -1) -- P l.

The fundamental polynomials then become:

rlr(x)=(x -x 2 )(xI -x 3 )=6 1 ( 1 +62 ), r2(x2)f(x2 -x,)(X2 -x3 )=--6162

ir3(x 3)=(x 3 -xI)(x 3 -x2)=(61 +62)62 . (7.10)

The weight vectors for our estimation formulae then become:
=-2, -62 6+ )= 1 (_ 62 (61+62 )2 al (7.11)

k61(1 2 162 ' (61 + 62)62) 81 +62\ 6 8162 '2

(_(_ 1 36 -3+ P), 2p, + I + 2 + 2P2 + 1, (1 + 2p, )) = -I + PA) 2 + (p, + 102), -( 1 + PI))

D2 6 2 6S+2 - 61+262
\T6 (61 '+62)'-6162 (61 +62)62)

"1 +62(-61 61 '62 )
62) -616 (61 - (+ ),6-2,+)) 7.

1 62 -(6, +52)2 6

65 62 6 16 62
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8. Treatment of longitudinal boundary

When treating any point within the cavity or at either longitudinal boundary (where a partially reflecting mirror
is situated) there is no problem. But, for example, at z = 0, e' is determined by eq. (2.35) and not through pre-
vious predictor/corrector formulae (7.11)-(7.13) as only e- is calculated at z = 0 in that manner. However, for a
point one increment (6 = Az) from the left mirror, one encounters difficulties calculating the forward wave. The
second needed point, which is vital to the formulae. would fall outside the cavity. An identical difficulty arises
from the counterpart backward wave with respect to the right hand mirror. The field traveling from the right is
defined at z = L by eq. (2.36).

To deal with this situation one has to modify the predictor/corrector schemes so that an increment 62 is used
instead of 6. The loss of that second point, which reduces the accuracy of the derivative estimator maintains near
the mirror the same order accuracy. One must compensate this loss by locally reducing the mesh size.

9. A three point estimator formula for the Laplacian of a function

We seek a weighting vector L = (i) such that

1 aX 2 xaxIL=L" (9.1)

Because of the linearity of all operations, this may be rewritten:
,72I = 2D -f(') + -D - Y), (9.2)

where D is the weighting vector for the first derivative derived in the previous section, and 2D is the weighting vec-
tor for the second derivative. To find 2 D, we note:

2D X2 0 (9.3)

so that our equations become, using the notation of the previous sections:

{AsD 21 =(61+ 62) 6162 ' (61" +62)62)

62 2 + + (2- +.'. 2 2 (9 4)21 621 62 6 62 6 4 p2 p + 2 2

Note that this formula is independent of x. Combining (9.4) with previous results, we get the following weighting
vectors for our Laplacian:

+ L (P( +P2)( 6 +t L )(95)

L =2I

2 " 2 2 27' I
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33 1 +it 3 a \ +"1 (9.7)

If we introduce the variables

P 6, Iri =2 - (9.8)

P2 1LS I )2:--2\6- ,(9.9)

d=!=! 1 +62 .(9.10)

The formula simplifies to:

1 31 d \ d d
d 2  x XI)A X X 2x, X

xL2 = 1 2 d X2 X! r2 +r, r2 -))+i±'+ (9.12)

d I\\ d d\"
L3 12 Id +r2(2+ A- ( r2 1-!L+ r, (I+ . (9.13)d X3x 3  ',X 3 1/ 2x3  X

It should be noted that, since the Laplacian involves a second derivative and only three points are used, the above
formulae will lead to error term of first order in 6 (or d).

This section can be readily extended to a four-point estimator. The details of the derivation can be found in ref.
[441.

10. Concluding remarks

Most features of the numerical model used to study temporal and transverse reshaping effects of short optical
pulses counter-propagating in a nonlinear Fabry-Perot entry have been presented. The derivation of the differen-
cing formulae was summarized. The experiment strives to achieve a rigorous analysis of this nonlinear interaction
with maximum accuracy and minimum computational effort. The applicability of Moretti X-scheme developed in
gas dynamics to this laser physics problem has been demonstrated. Extension of his method to nonuniform grids
were carried out. To facilitate the legibility, maintainability and portability of the program, as well as the imple-
mentation of further extensions of the planar wave theory, structural modular programming techniques have been
used. The resultant code is concise and easy to follow. Results of this algorithm will be presented elsewhere.
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The complete mathematical modeling of nonlinear light-matter interaction is presented in a hydrodynamic context. The
field intensity and the phase gradient are the dependent variables of interest. The resulting governing equations are a gener-
alization of the Navier-Stokes equations. This fluid formulation allows the insights and the methodologies which have been
gained in solving hydrodynamics problems to be extended to nonlinear optics problems. To insure effective numerical treat-
ment of the anticipated nonlinear self-lensing phenomena, a self-adjusted nonuniform redistribution, along the direction of
propagation, of the computation points according to the actual local requirements of the physics must be used. As an alter-
native to the application of adaptive rezoning techniques in conjunction with Eulerian coordinates, Lagrangian variables are
used to provide automatically the desired nonlinear mapping from the physical plane into the mathematical frame. In this
paper we propose a method suitable for the solution of the described problem in one-dimensional cases as well as in two-
dimensional cases with cylindrical symmetry. To overcome the numerical difficulties related to the inversion of the Jacobian,
an analytical algorithm based on the paraxial approximation was developed.

1. Introduction

When sufficiently strong optical beams propagate through nonlinear media, significant self-action phenomena

1I can occur and the propagation characteristics are significantly altered from the vacuum propagation [2]. In
particular, self-lensing associated with the nonlinear index of refraction of the medium appears. The correspond-
ing nonlinear beam distortion due to the nonlinear interaction can be rigorously solved only by using appropriate
numerical methods since the equations are far too complicated to be handled by any known analytical techniques.

Should the beam focus along the direction of propagation, its transverse dimensions will drastically change at
the focal point from what it was at the aperture. It becomes necessary that the transverse dimensions of the three-
dimensional grids shrink/expand in size as the focal point is approached/passed [3-8,171.

For the nonl'ear interaction, the actual desired shrinkage/expansion of the transverse mesh cannot be guessed
a priori; it must be locally determined by the solution to the problem itself. It is therefore necessary to have the

* A numerical algorithm associated with the hydrodynamic analogy of quantum mechanics was previously developed by the
same authors, using explicit finite differencing methods in Eulerian coordinates as well as splitting and self-adaptive rezoning.
The paper was presented at the Second International Symposium on Gas Flow and Chemical Lasers, Western Hemisphere
(1979) held on I -15 September 1978, at the Von Karman Institute of Fluid Dynamics in Belgium.

* Partially supported by the Research Corporation, the Army Research Office, the Office of Naval Research and the Interna-
tional Division of Mobil. Present address: Laser Spectroscopy Laboratory, MIT, Cambridge, MA, USA.

0010-4655/81 /0000-0000/$02.50 Q North-Holland Publishing Company
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three-dimensional space grid changing concomitantly with the actual beam shape and size and the local wave-front.
To avoid oscillatory behavior associated with the decomposing of the electric field into its real and imaginary
parts, it is necessary to describe the field using the modulus and the phase [9-12].

The present paper deals with the hydrodynamic analogy [11,12] of the problem of nonlinear propagation.
* - In this approach, the evolution of the beam is interpreted in terms of a flowing fluid whose density is propor-

tional to the gradient of the phase. This description allows the treatment of more slowly varying dependent
variables and yields equations of motion that are similar and equivalent to those obtained by the method of mo-
ments used for the average description of the beam propagation characteristics [ 1,13-15]. Furthermore, this
scheme could allow even larger and coarser marching mesh sizes if it were used simultaneously with an auto-
matically adaptive nonuniform rezoned coordinate system. The set of governing equations thus obtained is a
generalization of the Navier-Stokes equations [ 16-18] that describe a compressible fluid subjected to an internal
potential which depends solely and nonlinearly upon the fluid density and its derivatives. This internal potential
is often referred to as the quantum mechanical potential.

A further transformation of the dependent variable, namely the use of the natural logarithm of the density, is
also introduced 1171 to simplify the numerics. To generate an effective and reliable computational code with
modest storage requirements, one usually introduces mapping techniques which consist of various function and
coordinate transformations. An alternative method to this systematic is the adoption of Lagrangian coordinates.
The Lagrangian approach [ 191 operates with the displacement of a fluid element, following the temporal evolu-

* • tion of its trajectory. In this way, one easily finds the evolution of the phase and the energy in the plane trans-
- - verse to the direction of the beam propagation. Hence, the system of Lagrangian trajectories corresponds to the

automatic self-adaptive nonuniform rezoning and mapping techniques used in the usual Eulerian system; it
should also ensure an optimum redistribution of the computational points during the calculation in the various
regions of interest. Furthermore, the number of equations is reduced (in comparison to the Eulerian description),
and the coupling between the different variables is strengthened, thus accelerating the rate of convergence of the
algorithms.

The organization of this paper is as follows: section 2 presents the equations of motion. Section 3 is devoted
- ito the energy conservation and the motivation for an identification of physical variables. Section 4 introduces

the fluid description. Section 5 reviews the method of moments. Section 6 summarizes the proposed algorithm
based on the Lagrangian formulation. Section 7 presents the conclusion.

2. Equations of motion

For the class of problems describing the propagation of optical signals, the slowly varying envelope approxi-
* mation is usually adopted, namely [1]

E(r, t) = Re e(r, t) exp i( -wet) , (1)

where z designates the propagation direction. Assuming that the complex amplitude e(r, t) changes by a small
fractional amount, temporally in the optical period 21r/wo and spatially in the optical wavelength 2rc/wo, the

* field equation becomes first order in z and t and reduces, for a linearly polarized light, to the quasi-optics equa-
tion

I 2 + a (2)VTe +-e +- e=71e2 le. (2)2wono az C at
Here, no is the linear index of refraction of the background material, y is proportional to the nonlinear part of
the refractive index n2, n = no + n2 Iel 

2 e. The differential operator V2 is the transverse Laplacian in Cartesian
coordinates. The time scale is normalized to a characteristic time i-P of the input pulse and the transverse dimen-



F.P. Matrar, . Teichmann / High intensity laser beam propagation 3

sion scales to a characteristic spatial width rp of the input pulse. The input beam is supposed to have azimuthal

symmetry. By introducing a moving frame of reference,

7 = z, r = t - (no/c)z (3)

the quasi-optics equation (2) reduces to the nonlinear Schr6dinger equation:

i CV2e a (4)S-2wo noe T -1

3. Energy relations

By multiplying eq. (4) by e* and adding the complex conjugate, one obtains (with ' =-ft + i7t2 )

i (eVT eVe) a-Le2 = 2yile41 (5)
""2wo noa7

or equivalently

VT J aJ a /3 2-f1 le41, (6)

where J = le21 A2,

JT (2wono) " cVT " (eVTe* - e* VTe) : (C/no o)[A 2 (VTO)].

In the last relation, the polar representation of the complex envelope was used:

e =A exp(io), (7)

* where A and 0 are the real functions of coordinates.
The components J, and JT represent the longitudinal and transverse energy density flow. Thus, the existence

of the transverse energy density current is related to the transverse gradient of the phase 0 of the complex field
(7). When IT < 0 (i.e., VTq < 0), self-induced focusing dominates the spreading due to diffraction [201. The
choice of the intensity A 2 and the gradient of the phase 0 as new variable is physically enlightening and elimi-
nates most of the oscillatory phase difficulties [2] associated with the use of real and imaginary parts of the
electric field.

4. Fluid description

Let the nonlinear polarization on the r.h.s. of eq. (4) be written as

pNL = (XR + iXI)e = XNLe, (8)

where XR and X, are real functions of A. Using eq. (7), one obtains from eq. (4) the transport the the eikonal
equations (no = koc/wo) [211:

a!H 2
ko -- A + VT " [A4VT] =- XIA, (9)

2ko +T + I 2 XR. (10)-

The transport equation (9) expresses the conservation of beam energy over the transverse plane. When Xi = 0, the
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total power is conserved along the direction of propagation. The eikonal equation (10) describes the evolution of
the surface of constant phase. It has the form of the Hamilton-Jacobi equation for the two-dimensional motion
of particles having unit mass and moving under the influence of potential [ 1] given by

2 - (VTA)A  27r '  11)
2k0  n

if ko.z is regarded as time coordinate and koxx. k0 y as spatial coordinates. Furthermore, if one adopts A2 and
VTO as new dependent variables, the equations of motion become similar to the continuity and momentum
transport equations of ordinary hydrodynamics.

By defining

u =ko'VTO, p=A 2  (12)

and supposing X, = 0, eqs. (9) and (10) can be written as

au+ (I [p-1 2 (21 +72.

aq -( oT = T[-2k0 "VT ko (VTP), (13

ap + VT- (PU) = . 4all (14)

These equations are the momentum and continuity transport equations of a fluid with a pressure P =(V' ip)[x/p.
It should be emphasized that this pressure depends here solely on the "fluid density" and not on the "velocity".
Eq. (13) can be rearranged into

-(pV)+ VT (p ))= j VT T -- (VTp)(VTp +-p(VTp), (15)

- -where I is the unit tensor.

S. The averaged description of wave beams in nonlinear media, the method of moments

The existence of constants of motion and conservation laws, even in a limited number, is very useful for
obtaining insight into the dynamics of the self.action phenomena associated with the propagation process. To
analyze the nonlinear quasi-optic propagation, Vlasov et al. [ 13] extended the method of moments, originally
developed in connection with the transport theory. In this theory the problem of finding a certain distribution
f(Q) is replaced by that of determining the moments Mn = f_ :"f() dt of this distribution, which are usually
more easily calculated than the function f(Q) itself. Knowledge of all the moments allows the use of known
methods to reconstruct the form of the function f(t). A simple expression for estimating the width of the dif-
fracted beam is derived in terms of the zero, first-order moment and second-order centrifugal moment integrals
of the incident field. These moments are integrated over the full beam cross-section and are, therefore, functions
of the propagation coordinate only. The theory of moments only holds when the susceptibility is a function of
lel 2 , (i.e., when the nonlinear index of refraction is a cubic or fifth-order power in the field).

The starting point of the method of moments is the recognition that the existence of a hierarchy of conserva-
tion equations [ 13,15]

aw a
-= - '~j, j=c2V • T, -[Tr(T)] =-V 0, (16)atata

O "implies a relation between the conserved quantities and the time derivatives of the moments of w. Here, w is
scalar, J and Q are vectors and T is a symmetric tensor of second rank having the trace Tr(T). The first three
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moments of w are defined as follows:

W= fdVw, S= fdVrw, (Qef)2j fdVr2w. (17)
VI V V

The integrals are taken over the volume in which the field quantities are defined, and r is the position vector.
Using the Gauss theorem, it can readily be shown that

dW d2S d3  2
t =t (Qff) = 0.

*In deriving these results, it was assumed that

i, J=h. Q .T=0

on the closed boundary Z with normal h of the volume V. If I is at infinity, all integrals converge. It thus follows
that

W =  
0 , S = S0 +u t and (Qef) Q + 2cI t + c 2t

2  (18)

where So = S(t - 0), Qo = Q(to) and
/'= 1 _ fd VTr(T)iro

fdV~t ~ j C1=LfVr -J1 t=O' C2 tO

WOvo V Ov

The relations (18) have a simple physical meaning: the energy W of the field is conserved, the energy center S
moves along a straight line with a constant speed u and the square of the effective radius of the bunch, Q2eff,
varies according to a parabolic law (for t ,, Qeff - t). It can readily be verified that the conserved quantities
satisfy

nfd 2 = 2 fdV r2w. (19)
tV V

The hierarchy of conservation laws is satisfied by Maxwell's vacuum equation when W is the density of electro-
magnetic energy, J is the Poynting vector and T is the Maxwell stress tensor.

Using the transformation (7) and introducing the fluid quantities (12), one obtains for the quasi-optics equa-
tion (4) where t - 7, V - VT and y I = 0

Sw-p, J=p",4K; r 1 y 2  
18,p] ,Jxy

T_' V VP)(VOP) - PVc + o .0x(V ) 8o

Tr(T) = - [(V2P) - p-' (VTp) 2 - 214op(u. u) + 2ko- 2p2 ],
+ 1) [(2p ) pD.UI 2

{VT [VT (p)1 - (VTP)(VT u) + u[(V.p) - iP' (VTP) 2 
- 2kopo) • u)]} +:--yp2 . (20)

The equation of the effective beam radius is now

Q2fr = Q2 + 2cli7 + c 2 72  (21)

with the following constants of motion:

Wo =fda py 0fo
zc

I1
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C1.. r- f dor, uy1= 0
le

C2 Wo 2kfdo(V i)-.-T (VTP ) 2  U) + 2k (22)

The beam quantities (20) verify the conservation relations (16). The invariant cl is related to the transverse
energy current. In terms of amplitude and phase, the integrand is A 2 (r - VTO). This shows that when the trans-
verse current of energy, which is proportional to the transverse gradient of the phase 0, is negative (VTO < 0),
self-induced lensing dominates diffraction spreading. It should be pointed out that these results only are valid for
a nonconfined beam of finite power. The integrals in the x, y plane around the outside boundary of the beam
cross-section can only vanish if both e and VTe vanish. This is not possible on a finite boundary unless e
vanishes everywhere. For a finite beam the boundary should recede to infinite. In the numerical solution it is
necessary to introduce a perfect conducting wall. The surface o:ais remain finite, although small. For this
reason numerical solution will disagree with the average mean square radius calculated from the method of mo-
ments by a small finite difference.

A similar hierarchy of moments was derived via the quasi-particle approach [22]. An alternative to the
- Schr~ding!r picture [13] discussed here is the Heisenberg picture proposed in ref. [23]. Although both methods

give the same expectation values, the Heisenberg picture is believed to be simpler.
The method of moments as outlined here represents a local check to the numerical analysis giving the average

estimate for quantities related to e2 .

6. The Lagrangian formulation

Let us summarize the fluid equations taking the quasi-optics relation (4) with the nonlinear polarization term
in the form (9). One has for X, # 0 (nonzero gain or absorption)

:-1V T  ,- 'roxlp, p U+ (U VT)U l 2 PVT[p-I2.(p 12)+XR (23)

The second equation can be rewritten as

p[" Tu + ( v - VT)u] VT[pVT(ln p)] + VTXR

or, by analogy with usual "fluid" equations, as

p[T -+ (1) VT)Iu = VTP + PVTXR, (24)

where the scalar function P is defined as

1 [pV-.(ln p)]. (25)

To elaborate the appropriate computational code, we transform eqs. (23) and (24) into the Lagrangian coordi-
"1 nates [19].
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The two hydrodynamic equations (23) may be rewritten in the Eulerian coordinates (( = 0) in the form

DO D
P. + P V T  W=0, P-U=UVTP,

where D/D? = a/aq + u " VT is the Eulerian derivative describing the motion of the fluid element in a given point
of the laboratory frame of reference. Let us transform eq. (23) into Lagrangian coordinates in which the observer
moves with the fluid element. In this way, the local derivative a/an7 becomes equal to the total derivative D/D17
although the new coordinates will be relatea to the initial position of the fluid element [24].

6.1. The one-dimensional case

Let X, 17 be the Eulerian coordinates and X = Xo (17 0 define the Lagrangian coordinate X0 . The speed u is
defined in the one-dimensional case as v = ax/ai7.

The transformation relations are as follows:

flL

XX(Xo, 17L) XO +f d? t(Xo, riL), 1  77L. (26)
0

It thus follows that

a ' /axy a a a a X aI N1 -I---
ax =axo aXo' aL a77 a? aX
The first equation (23) gives for X, = 0

ap -Pax -' a ax
alL ',Xoi ax0  n?7L
which integrates to the mass conservation law

S= Po(aX/axo)- . (27)
The second equation (24) transforms with the help of(27) into

a2X a +I axV I a
Po"U a --- Po PO jX (28)

* Using eq. (27), the scalar function P reads in Lagrangian coordinates

P=[4k 2 aX 3 aX']J (29)
4 k;1La a X;! kaX0  \aX3!

and eq. (28) gives, using eq. (29),

a2x I L axy5(ahxW (.xQ' 2  a3x
aL j kax 0  ax20 ! 2 aX0! aX2~ a. 0x

x+ a- 4  1 2 7 (aXa" aOxXax 2 a 2X 3 _ 4 X 2 , aX' a a7-o T'XX] X2" 1,'o (ao ,X (-X\)']ol + 2(QXo (a XR -•'a (30)

The system of fluid equations (23) reduces to a single equation in X which has a second-order derivative in
variable ?I and derivatives in X0 up to fourth order.

For a nonlinear media with a nonvanishing Xj, the first equation (23)

P V XP PTV =-XIP7 a k0
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is transformed into

a n( axl - Ii ~Xi- a 7L ax0 i k

which by integration gives

(ax)=Pex{ f dnL X,(31)

With this dependence of p on 1L, the second equation (24) reads

dp. ei L a2X 1 +~~ 0 (a )a7L i7 ., (32)doex f L PO a XRI exp
00

6.2. Two-dimensional case in cylindrical geometry

In cylindrical coordinates, the system (23) reads

aI7 r r ar ko,.--.~ ap+" + P a )- ×
,( - , j 4o af I (In )) p) +X. (33)

Introducing the Lagrangian variables rOL, 'L

rE = rE(roL, 7L), 77E = 7L,

we fimd the solution of the first relation (38) in the form (for X, = 0)

P ro rOL
P o P (34)

Let us define the fluid "pressure" by analogy with previous cases as,I
-iP = P' [FE --- (inO . (36)4k2 Ear aE i

The scalar P is explicitly

- I ( ar [\- (3arE -( a)rE )' ( a -( I(arE I (r371
aOL !-ao j / -aoL / -rL -- \aLJ) (37) .

Finally, the eq. (36) becomes

a 2 2rE 2 y-(a 2  
42 a
3

' (arE a r E /arF\- rE rE iarE\ a 1 r\

rE _?oL X- [aP E 1arE\ 2 /aro- \a1oLs \-',O ar{ OL/. 1 IE 2ar a 2 (arE \-3 aF V a3rE 1 ar IarE - aa2rE

k arOL MO I 2 4\aPOL, rE arhL rE \arL arOL ~~)2 0 arOL, arOL
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In the case of the imaginary part of X, , -# 0 we have by analogy with eq. (32)

arE r If av, ' - + I arL IrOa
2r O- expPo f  dnL xi(n L) a2o ' xi.. X. (39)" a17. = Po rY / x o 0 rLP+ rL aO

Details of the two-dimensional case in Cartesian coordinates can be found in ref. [251.
The evolutional equations (30) and (38) are rather complex due to the presence of the inverse displacement

gradient Jacobian J,,. In order to obtain the evolutional equation more accessible to numerical analysis, we limit

ourselves to the paraxial approximation, assuming that the beam convergence or divergence, respecti- -ly, due to

the nonlinear polarization remains small. Let us introduce the Lagrangian displacement 4 1261

X_ a + ai (40)Xf~o+ , ~l~lxol, J - qaXoi"

The value of any function (field) defined on x, resulting from the displacement k may be expanded in power

series of 4 either in form of Eulerian expansions defined at x(1), either in form of Lagrangian expansions defined

at xo(i). Introducing the Eulerian expansions

p(x) = po(X) + p(x) + 2p(x) + ... u (x) = Uo(X) + IU(x) + 6 (x) +...

into the system (23) and expressing the first and second order changes 6 as functions of the displacement , we

obtain the following hierarchy of evolutional equations [24]. (We assume /a uo 0 0, Xi = XR = 0):
Oth order: (uo" VT)uo = j VTL p. 1 /2V2p1/2}; (41)

S1st order:

= VTp 312 [VT . (poE)j V2-p112 - po"2 V .[P;" 2VT (pov)2 (42)

2nd order:

t- .VT)[4* + (o " V T"-O ( .VT)IJo] + titj a- o ax

+ {[(W VT)0 I VT)[+ (vOJ0 VT)- (k 'VT)O] + (' VT)[4'+ (uo VT) -(k" VT)t)o "VT}UO
a200 a2u 1.+, IN}V~ i+IU

ax0 ax0i ax0 axoJ" VT o
l { I F a ,a !+(VT Vp

= V{P; E2VT (po)] V [p"VT. +P 0 o ax 0  .4o,

k[2 VT)[VT (T 0 V P° 2 Po det V Vp +' Vi P-

ax0a0  ax, J atO
+ [(t - VT) [VT (Pot)l ] i a~o po dtaV -12V p/

a~oi 3XXo1 J
-~ ~, 1  2p-" 2 (;- VT)[VT .(PoE,)] + p12o ap + 2p' det( ~ (43)

T ax , J ax0 ax0  ax0, /JJ

for dispersive media Xi 0 0, XR * 0 and the integration of the first equation (23) results in

p po(det Jil)' exp[I /ko) Ifdi' x,] (44)

40
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The r~h.s. of the second evolution equation should then be completed by an additional term

2-'oVTXR -(VT )VTXR}" (45)

In case of an azimuthally symmetric beam we introduce cylindrical coordinates assuming that the azimuth 0 is
ignorable. Then

det J = r ar
.-. ro aro

Under the assumption of the paraxial approximation, r =ro + the hierarchy of evolutional relations reads
(xQ = XR = 0):

oat- - 5 0 (1/2 - 1- 2
--arr W 0m Po , (46)

a ~ a2  a \a
" + 2 0o, -r t - Vor, - Vo r +Vo - Vo) - o,

i~ ~ a 32 - apo 2  ( 2p0  aP3 2 1
8k2 ao P IAP +(a Po) + 2apo a 2po div(poj), (47)

8k aro L aro ] a-o ar ar0

av0,t1 .a0uor+a 42 'ra VQ
,o .oLu- +o 0 0 1 + (v+r , ,~ /o

[tor 2 ' j-[t ~r±~ av0  a2
,o a-o aoJ o + o, a - -

[ (2 2 r" a2  adi F o)
8ka 2 [div(Po )o div(pot)] - 2po/2 L Jdiv(po

1/ at -1/2 2 aP 0  1/"P" ,o a,-o -Fifo o 1 a/o2
(I.T, pi/i [2 -A [div(pot)] + 2po. r _ ! + P 2 + 2 p 2  1r'}  (48)

A generalization of these equations for the dissipative case, X, 0 0, XR * 0 is straightforward.
In the two methods presented, the set of starting transport equations is combined, via the Lagrangian displace-

ment X on t in the case of paraxial approximation, into one equation for X or t, respectively. This equation [eqs.
(30) or (38), eqs. (47), (43) or (47), (48)] is further elaborated using a suitable differencing scheme. The virtue of
the present analysis consists in the fact, that only one variable has to be calculated. This differs our method from
Lagrangian analysis, carried out in the past [24].

7. Conclusion

L By writing the paraxial scalar wave equation in a conservation form, one finds that it has the structure of the
hydrodynamics equation. On the basis of this analogy, the intensity of the laser beam, Je12, can be interpreted as
the density p, while the phase, 0, as the velocity potential (u = grad 0) of a hydrodynamic flow process subjected
to a pressure, which - in contrast to classical hydrodynamics - depends on derivatives of the fluid density.

It is noteworthy that this hydrodynamic approach to intense laser propagation in nonlinear media removes the
rapid numerical oscillations encountered when the field is described by its real and imaginary parts: the new
independent variables change much more slowly.
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During the nonlinear interaction, significant reshaping and beam distortion take place. To achieve accuracy and
efficiency simultaneously, one must resort to nonuniform grids which self-adjust according to the local require-
ments of the physics. Thus, the Lagrangian description - as opposed to the Eulerian description, which would
have required mapping and adaptive rezoning techniques - is adopted.

S." The continuity and velocity equations reduce to only one evolution equation for the Lagrangian displacement.
The resulting governing equation involves derivatives ar/ro up to the fourth order. To overcome the numerical
difficulties associated to the inversion of the Jacobian, an analytical algorithm valid in the paraxial limit was

- . further presented.
The object of this communication was to illustrate a novel transfer of effective computational techniques

gained in fluid and aerodynamics to optical physics [81 by emphasizing the fluid equivalency. The main goals of
this study were to (1) propose an algorithm which is totally consistent with the subtle physics requirements; and
(2) to readily gain additional physical insights in this essential nonlinear light-matter interaction.

It is noteworthy that a recent independent research effort also dealt with the hydrodynamic analogy in a
- Lagrangian description for nonlinear propagation in the atmosphere. However, an explicit algorithm was adopted
-. [261.
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Abstract

Results of numerical calculations are presented and analyzed for pulse generation and subsequent stabili-
zation in large propagation distance z , for a collection of two-level absorbers which are swept-excited by
an impulse inversion along the z-direction at the speed of light in the medium. The calculation is performed
using the coupled Maxwell-Bloch formalism and for the conditions that T2 = Tl , T2 > > Tc, g/K> > 1, where
T2 is macroscopic dipole moment dephasing time, T1 is the longitudinal relaxation time for the absorber, -c
is the characteristic superradiant cooperation time among the absorbers and g/K is the linear gain, g , to

. diffraction loss, K, ratio. Results of the calculation for nonlinear pulse evolution and propagation for one
spacial dimension (planar case) is compared with the results for the comparable case where transverse mode
coupling is included.

Introduction

In 1975, Bonifacio, Hopf, Meystre and Scully'(hereafter referred to as BHMS) predicted the conditions for
which steady-state pulses having characteristics of superradiance (intensity _p2, temporal width - l/p , where
p is the density of absorbers, and pulse envelope varying in time as hyperbolic secant with characteristic
delay of the peak from the excitation) can be generated in swept-gain amplifiers. They obtained and analyzed
steady-state solutions of the coupled Maxwell-Bloch equations in the retarded time frame in one spaclal di-
mension z in the limit z P. , for the initial condition that impulse inversion occurs at -= 0, where T = t
- z/c, in the retarded time. Exact analytical results under these conditions were obtained by BHKIS for hom-
ogeneously-broadened systems for two special cases, T2 < < TI and T1 = T2, where T2 and TI, are the transverse
and longitudinal atomic relaxation times, respectively.

Subsequent theoretical work which followed the initial work of BHMS addressed to the quantum mechanical as-
pects of pulse buildup from noise and the role of spontaneous emission in the small signal regime for a sys-
tem with small Doppler width2 and for a homogeneously-broadened system.3  Further theoretical work analyzed
the effects of coherent pumping, for the excitation, on pulse buildup, both numerlcally' and analytically ,6,
The first reported detailed experimental study of swept-gain superradiance"'s was for C02-pumped CH3F.

Since Dicke's Initial prediction8 for the circumstances under which a macroscopic volume of atoms can
radiate collectively (collective, spontaneous relaxation), a large amount of theoretical and experimental
effort has been devoted to the subject of superradiance." Experimental arrangements for the study of super-
radiance has been identical with that for swept-gain superradiance.g'0 Even though the two phenomena stem
from entirely different physical processes, the same physical model should account for both, each being a
limiting case essentially in terms of the length of the active volume of atoms. Indeed, the first reported
experimental study of swept-gain superradiance' also constituted a study of the evolution from superradiant
response of the system through swept-gain superradlance as a function of the length of the active volume
along the propagation axis." ° The experimental results indicate a continuous transition from conditions
supportive of superradiance or superfluorescence through swept-gain superradiance in the asymptotic regime
of large propagation length z.

In this paper we analyze numerically, and interpret analytically, the evolution of the response of a
collection of two-level absorbers to swept impulse excitation, from the small volume, superradiant regime,
through the asymptotic, steady-state propagation at sufficiently large propagation distances z. We also de-
termine the effects of transverse mode coupling on the pulse generation",' and propagation. "

*Work partially supported by ARO, ONR, Battelle, University of Montreal, and Research Corporation.
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The model is presented in the next section and the analytical results for swept-gain superradiance in the
planar regime obtained previously by BHMS' are briefly reviewed. A comparison is made between conditions
for the observation of single pulse superfluorescenceT4 and swept-gain superradiance.1 Results of the nu-
merical calculations are presented and discussed in Section III for the evolution of pulse area with propa-

* " gation distance z for the single spaclal dimension. The evolution from superradiance to steady-state
swept-gain superradlance and their connection is explicitly analyzed and discussed. Results for a compar-
able case incorporating transverse mode coupling with a Guassian gain profile are presented and compared
with results for the planar, one spacial dimension calculation. It is shown that the effects of self-focus-

*ing can be much more important in the swept-gain, steady-state condition than for the particular correspond-
ing conditions for superradiance. The results of our calculation are summarized in the last section and
future work connected with these results is outlined.

II. Coupled Maxwell-Bloch model for swept-gain superradiance

BHMS showed' that if a volume of two-level absorbers is gain-swept at the speed of light in the active
medium by a traveling impulse excitation, a solitary pulse is generated from noise amplification in the

* amplifying medium and reaches a steady-state at sufficiently large propagation distance z, provided the
gain, g, to loss, K , ratio satisfies the condition g/ > 1. The solitary pulse is characterized by super-
radiant-like features with respect to pulse shape, intensity, temporal width, and delay of the peak of the
pulse envelope from the impulse excitation.

They considered the coupled Maxwell-Bloch equations in the retarded time frame, which is a frequently
used model for pulse propagation and generation in nonlinear media,

-p L -(2-1)
TT T2

__ -"T (2-2)

a 01 P "E . (2-3)

In the above equations, P is the dimensionless macroscopic transverse polarization per atom, A is the inver-
sion for the two-level atom, T2 and T1, are the dephasing and relaxation times for the polarization and atom-
ic inversion, respectively. The third equatlon,(2-3), Is the linearized Maxwell equation' s in the retarded
time frame in the slowly varying envelope (SVEA) and rotating wave approximation for the pulse envelope E.
Here, the electromagnetic field envelope, E , is normalized to give the Rabi frequency"5  ,

_ 0 (2-41

where po is the matrix element of the transition dipole moment between the pair of atomic energy levels and
E Is the electromagnetic field envelope which is a function of the propagation coordinate z and retarded

i~i-I .  time T ,
t'-e.T = t - z/c . (2-5)

The other quantities involved in Eqs. (2-1) - (2-3) are

3Ell (2-6)
2 o

where g is the gain and A Is the wavelength of the carrier frequency of the single mode radiation field en-
velope, p Is the atomic density and To  is the spontaneous atomic relaxation time. The loss term in (2-3)
defined by K is the linear loss which arlses because of diffraction as well as other dissipative processes.

BHMS considered the steady-state solutions of (2-1) - (2-3), i.e., the solutions under the condition

C(Z.*WT) = lim lc(0.T)e-Kz + a dz' eK(Z-Z') P(z ,T) (2-7)

and the initial condition

= 1. (2-8)

Equation (2-7) leads immediately to the adiabatic relation between the field and polarization,

E -. P(z-,T) .(2-9)
K
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This last expression can be used to eliminate P from (2-1) and (2-2) and steady-state solutions are found by
solving the resulting pair of nonlinear differential equations.

Exact analytical results were obtained by BHMS for two distinct cases, T.2< < TI and T 2 = TI. For

T2 < < I:

c(-t) = sech -L (2-l0)i..'TS "TS

where

T = T2 [( g-K)/K] (2-11)

Forg >>s, we see from (2-10), (2-11), and (2-6) that the intensity I of the steady-state pulse, I - E2 ,

varies as the density squared, Ip 2 , whereas (2-10) and (2-11) indicate that the width Tr varies inversely
as the density t - lip. Also, from (2-11) the pulse width is always less than T2 whenever g > K. For
T 2 V T :

* The set of equations (2-1) - (2-3) reduces to the generalized sine-Gordon equation'

0 + K&, + c z a sin tR,z) (2-12)

where

(I - " )  
(2-13)

is the reduced time and

S1 1

2 T1
The angle t is the Bloch angle,

34 (2-14)
a

In the asymptotic regime, the space derivative term in (2-12) vanishes and the resulting solution, using
(2-14), is

1 - Y t s e c 1

c(T) - e sech ( T) -E (2-15)

where

KT 2'. s = - (2-16)
s g

and the time delay between the impulse excitation and the peak of the steady-state pulse Eo* is given by

&= T~ log [ot .J.o (2-17)

Here, to~ is the initial Bloch-angle at -T = 0 to account for quantum noise which drives the atomic excitation
away from the completely inverted metastable state.

Again, from (2-15) it is seen that the intensity I - p2 whereas the pulse width Tw - 1/o . It was shown'
by BHMS that such pulses will evolve provided g/K > 1. The area of the pulse e is defined as the Bloch angle
t at infinite time T , and is obtained by ir egrating (2-14). From (2-12) in the asymptotic regime, i.e.,
neglecting the first term on the left,

g/Ktan 1e = (tan 0 ) e (2-18)

Thus, given an initial Bloch angle to, for g/K sufficiently large, the area 0 approaches r , i.e., as large
as it can be for a single pulse. The threshold for 6 - Tr was determined to be

-g/c threshold z log (2-19)
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Any further increase in the gain-to-loss, g/K, does not increase the pulse area since it is saturated above
threshold. However, from (2-15) the intensity continues to vary as the square of the density and the pulse
width as inverse density.

The criteria, therefore, for the generation of steady-state pulses is that the active medium be swept-
excited at the speed of light in the medium and that g/Kr > 1. The resulting pulses have characteristics
of superfluorescence", although for different physical reasons. The major difference in realizing the
two phenomena is that to produce superfluorescence the medium responds as though it were uniformily excited,
i.e., the atoms are contained within a certain cooperation volume, whereas for swept-gain superradiance,
the medium "sees" an impulse excitation traveling at the velocity of light in the medium. Table 1 compares
the conditions for single pulse superfluorescence in the mean field limit14, with the corresponding con-
ditions for pulse generation in swept-gain superradiance in the asymptotic regime. It is to be pointed out
that the essential physical difference between what has been called superfluorescence and what is termed
swept-gain superradiancel is that the atomic relaxation for the former occurs by collective, spontaneous
relaxatione, whereas for the latter, individual atomic relaxation occurs by stimulated relaxation due to
pulse propagation in the medium.

Table 1. Comparison of Conditions for Superfluorescence in Mean Field Approximation with Swept-Gain
Superradiance in Asymnptotic Approximation

Superfluorescence Swept-Gain Superradiance
Mean-Field Approximation Asymptotic Approximation

iU(t) = P(t) - K'C(t) (ZT) = UP(z,T) - Kc(z, )

T = t - Z/c

K ___t 
pE > >7

< c < R < TD < TV, T2, T* g/K > 1

TE = L/C T= (CK)

T R = 
K 2

T T1 og(iO Ts log Lcot -io

0

(TETR)T (TT

Here, TR is the characteristic superradiance time for z = L, T D is the delay time1
4 of the pulse peak from

. the excitation, and Tc is the cooperation time i corresponding to the cooperation length Zc, Tc = cZc. Note
that for L = 1'c, T R = TC. To is the delay time of the peak of the superradiant pulse from the impulse ex-
cltat"on.

We have calculated the evolution of pulse area for swept-gain superradiance as a function oi propagation
distance z according to the relations (2-1) - (2-3) for the conditions Tl = T2, g/K > log (l/lo) and for
TR <'T 2 where TR is the characteristic superfluorescence time. Thus, we have determined the evolution of
pulse area from the superfluorescence regime (small z) through the asymptotic swept-gain regime (large z).
These results we compare with corresponding calculations taking into account transverse mode coupling and
diffraction for a Gaussian gain profile. In this case, the Maxwell equation (2-3) takes the three-dimen-

* gm sional form

T- 1 2 d P (2-20)

where d radial function describing nonuniformity of gain profile, n = z C , and
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-1 (2-21)
Xg

is the Beer's length dependent Fresnel number relevant to propagation effects. Here rp is the Gaussian gain
width at half maximum. The transverse effects arising from (2-20) are related to the planar case using
(2-3) by taking the linear field loss K in the latter to be entirely diffraction-loss, i.e.

A' A (2-22)

* where A =r 2  Thus, the Fresnel number ,

(2-23)

the gain-to-loss ratio. The results of the calculation and related discussions are presented in the next
section.

III. Numerical results for propagation and transverse effects: Evolution from superfluorescence to
swept-gain superradiance

*i First we present the results of numerical integration of (2-1) - (2-3) for the initial condition (2-8)
S "" and for Tl = T2. We have also chosen the values for the system parameters such that the superradiance co-

operation time,16T , satisfies the condition tc<< T2 (see Table 1), where Zc = cTc is the maximum length of
the sample over which the atoms can cooperate to produce superradiant emission. Also, the gain, g , to loss,
K , ratio, g/K> >log (l/ o),(see (2-19)), so that results of the last section predict steady-state pulses
of area 8 = i , Eq. (2-18),

The absolute pulse area 101

11 IdT (3-1)

is shown as a function of propagation length z in Figure 1. There are three distinct regimes evident in the
pulse area, lei , propagation evolution. These are determined by the characteristic times for the system TR
(Table 1), and rs, (2-16).

The first regime, characterized by the smallest values of the propagation distance z shows a rapid rise
of the pulse area, (3-1), with propagation distance z. The area proceeds in z through lel = ir , correspond-
ing to single pulse buildup, to values lei > T , which eventually corresponds to subsequent ringing, and
finally peaks out at 181 z 3 . This behavior is described by the sine-Gordon equation (2-12), with the
values of the parameters used in the calculation (see Figure 1). We have, for this particular small z re-
gime,

K -1 < < isin 4, (3-2)

so (2-12) becomes

2 a sinO (3-3)

where, from (2-13), T * T since in this case T/T2 < < 1. This is just the Burnham-Chiao propagation
equation 17 

, which yields the well-known solution for pulse buildup from gain with subsequent undamped
ringing.

From (2-6) and Table 1, we have

= 1 (3-4)

2c 2c

where Tc is the Arecchi-Courtens superradiant cooperation time 16 which corresponds to the superradiant co-
operation length z a 9cZ C = crc, the maximum length over which the atoms can cooperate collectively to
produce superradiant emission. Equation (3-3) yields

* z/1
d" 1 dv sin$ . (3-5)

Here,
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v = T/TC = z/1, and 8 , as in (3-1), is related to the Bloch angle 4 , by e = l(T= z/c). Thus, the initial
pulse buildup in Figure I is governed by the superradiance time TR (Table 1) where Tr -z -l and TR= T c when
z = Z.c , and in this particular case, c = 2.68 cm. The region corresponding to 0 < eI < Tr we call the
single pulse superradiant regime, z < Zc, which is subsequently followed by Burnham-Chiao ringing. This
initial superradiant pulse buildup occurs in this case because Tc < < T2 .

After several diffraction lengths c-1  the area (3-1) reaches a maximum and then decays as e"Kz to the
asymptotic steady-state 8 = Tr pulse predicted analytically in the last section, and shown in Figure 1. This
regime is governed by the characteristic time TS , (2-16).

The results shown in Figure 1 exhibit the pulse area evolution from pure superradiancejel < r, through
Burnham-Chiao ringing, each governed by TR, to pulse area instability which subsequently decays by linear
field loss K to the asymptotic steady-state Tr pulse. The necessary and sufficient conditions for evolution
from superradiance to ir-pulse swept-gain superradiance are that g/K > log I/4o > 1, Tc < < T2 .

The effects of changes in the value of the linear field loss K , all other parameters remaining the same,
are shown in Figure 2 for four other values of K and, hence g/K. It is seen that asymptotic stability in
the pulse area is reached for lower z values the higher the value for the loss K , as one would expect. Also,
the higher loss and lower gain-to-loss reduce the amplitude of the pulse area instability peak, again as one
would expect. This further suggests that the transition from superradiance to asymptotic swept-gain super-
radiance can occur without intermediate ringing if (Kc) "l << Tc"

When transverse effects are taken into account in the calculation, Eq. (2-3) is replaced by (2-20). The
transverse mode coupling is generated through the first term in (2-20), and its contribution is governed by
the Fresnel number J-, (2-21) and (2-23). This is not the conventional Fresnel number used in discussions
of superradiance and superfluorescence 8 , but it is the one which is meaningful1 3 throughout the entire pro-
pagation regime. Generally, the larger the Fresnel number ! , (2-21), the less the importance of contribu-
tions from transverse effects, (2-20), i.e., large $9- means more nearly plane wave propagation behavior.

We use the values of the parameters and the conditions which gave rise to the one-dimensional results of
Figure 1, but choose the cross-sectional area A for a Gaussian initial gain profile from (2-2.2) and the value
of c used to obtain the results of Figure 1, where rp is the radial Gaussian width for the gain distribution,
and obtain the calculational results shown in Figure 3. Here, we show the pulse area (3-1) as a function
of propagation distance z and radial dimension p. Energy which intersects the boundary p = Pmax Is ab-
sorbed in the calculation; thus diffraction as well as transverse mode coupling is explicitly treated in the
calculation consistent with the conditions imposed by (2-20), (2-21) - (2-23). Thus, the calculation giv-
ing the results shown in Figure 3 is the three-dimensional extension of the calculation which gave the re-
sults shown in Figure 1. The pulse area (3-1) as a function of z for the on-axis mode is displayed in Fig-
ure 4.

It is noted by comparing Figures 1, 3, and 4 that the transverse effects almost completely wash-out the
instability in the pulse area buildup which occurs in the one-dimensional calculation, Figure 1. Further-
more, Figures 3 and 4 indicate a different kind of pulse area instability at higher z values which is due
to self-focusing. The qualitative effects of self-focusing on pulse propagation can be seen in Figure 5.
The results of the three-dimensional calculation indicate, therefore, that a true steady-state may not
exist, at least in the sense of the analytical predictions of Section I.

Similar one-spacial dimension calculations for pulse area evolution in swT t-gain superradiance, but
under the influence of lethargic gain conditions, have been reported by BHMS

IV. Summary and conclusions

We have demonstrated the pulse evolution in one-dimensional propagation from ;uperfluorescence to asymp-
totic swept-gain su erradiance for ideal conditions supportive of superfluorescence"," and it-pulse swept-
gain superradiance.? The results are shown in Figures 1 and 2. Transverse effects tend to wash-out the
early pulse area instability which occurs for the one-dimensional case as seen by comparing Figures 1 and 2
with Figures 3 and 4. However, as noted in Figures 3 and 4, the pulse area show an instability in the
asymptotic region of large z when transverse effects are taken into account. Th's evidently arises from

4 self-focusing, Figure 5. Thus, in this case, a true steady-state does not exist due to transverse mode
coupling effects.

*.:i This work is in process of being extended2 °,Zl to the calculation of the effects of coherent optical
pumping and propagat 4on as well as transverse effects for three-level systems 6 ,7  for three-level super-

. fluorescence and swept-gain superradiance and coherent pulse shaping due to specified pulse injection and
propagation in three-level systems.
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Figure 1. Pulse area 6 = I !cIdT vs. propagation dis- Figure 2. Pulse areae lcldt vs. propagation
tance z for numerical integration of Eqs. (2-1) - (2-3). distance z for- numerical integration of Eqs. (2-1)
Values for the parameters ued in the calculation are: - (2-3). Values of the parameters used ire those
g 291.6 cm- 1 , K - 2.60cm-',g/K = 112.15, T=T2=70 nsec, of Figure I except for i: l)K= 5.2 cm- 1, g/Ic =
o= 9.42 X 10- 4 ,TC = 89.4 psec. 56.08; 2) K = 10.4 cm-1 , g/K = 28.04; 3) K = 20.8,

Vic = 14.02; 4) K 41.6 cm-1, g/K = 7.01.
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Figure 3. Pulse area 6 vs. propagation distance z Figure 4. Pulse area 6 vs. propagation distance
and radial dimension p for numerical integration of z for the on-axis mode. Values of the parameters
Eqs. (2-1), (2-2), and (2-20). Values of the param- arc those of Figure 3.
eters used are those of Figure 1, with the Fresnel
number .9 chosen according to (2-23) and a Gaussian

" initial gain profile determined from (2-21),(2-22).

Figure 5. Temporal and radial dependence of
pulse intensity at large z.
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Abstract

Using proven computational methods developed to efficiently treat transverse and longitu-
dinal dynamic reshaping associated with single-stream propagation effects in cooperative
light-matter interactions, a realistic superfluorescence (SF) theory was constructed in close
collaboration with experimentalists. A semi-classical model based on the Maxwell-Bloch equa-
tions (which rigorously encompasses diffraction, transverse density variations and inhomoge-
neous broadening) is used. Furthermore, the medium initiation is stimulated by a coherent
pulse of an area 8 which varies radially, propagates along the rod axis and tips the indi-
vidual Bloch vectors over an angle 6 from its upright position. This effective initiation
is treated in using either (a) an hoogeneous average tipping angle or (b) instantaneous
longitudinal and transverse fluctuations. The Cs datas are correctly simulated for the first
time. ''

Important remark
At this time, T wish to express my appreciation and give credit to Gibbs, McCall and Feld

for their many contributions in the form of numerous relevant discussions, preparatory ana-
" lytical work and help in selecting details of realistic models based on their close contact

:. with laboratory results. In addition, Dr Gibbs' participation in carrying the calculations
accelerated the rate of progress in my research. Let me take this occasion to thank Dr. Gibbs,

Introduction

Superfluorescence1 (SF) is the process by which coherent emission occurs from an ensemble
of two-level atoms all initially in the upper state. An important question in SF experiments
is why the output pulse is sometimes smooth, but at other times exhibits multiple structure
or ringing. Strong ringing or pulsing has been observed.by several groups, including the
initial HF gas studies-. However, recent Cs experiments never show ringing at low densities,
whereas at higher densities, highly fluctuating multiple pulsing is usually observed, belie-
ved to arise from transverse mode competition. Strong "McCall/Burnham-C iao" ringing is
predicted by semi-classical plane-wave models with initial tipping angle , which neglect
variations transverse to the propagation direction. On the other hand, simplified propaga-
tionless analytic solutions based on the mean field theory ('It-T) 6 of SF pulses have resulted

"- in a symretrical sech2 single pulse output. However, such solutions are somewhat academic
since all the experiments so far use extended samples for which propagation effects play a
major role. Alternatively, when the effective tipping angle is analysed, using quantum

4 mechanics 7 , several features of the observed pulses are successfully explained. However,
the theory is again far from being complete as several other features, such as the absence
of ringing remain unexplained. That is probably as was noted 3 ,7 ,10,1b because the one-di-

*~f mensional model was unrealistic. Specifically, transverse effects are expected to influence
the pulse evolution in at least two ways: (a) spa.tiae avetagng of radiation evolving pla-
narly in concentric shells each with its own density (hence, its own initiation and own

* delay); and (b df.,action coup.,ig which induce, communication betseen adjacent shells.
- The first mechanism describes very large Fresnel number F while the second one is very

important with small F samples Inclusion of transverse effects substantially altered the
one-dimensional Cs predictions "3b, leading the greater conformity with the Cs data.

The initial SF state is prepared by rapidly inverting a sample of three level atoms by
transferring population from the ground state to the upper state iith a short li,ht pulse,
creating a cylindrical region of excited atoms 2 . ST: pulse emission subsequently occurs
between this excited state and the intermediate state. There is no optical cavity and str:,v
feedback is negligible.

* This work was supported in part by F.P. 'attar, the Research Corporation, N!obil ('1 Corpo-
ration, the University of 'ontreal and the U1.S. Army Research and National Scircce Poundation.
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This research employs the semiclassical Maxwell-Bl9ch approach to explore the influence
of transverse effects, using both the average value 4 , a and statistics 7 of the initial tip-
ping angle 4 ,5a. The latter part of the study encompasses both longitudinal fluctuations7

and transverse fluctuations in the initiating spontaneous emission, as influenced by dif-
fraction.

of Transverse effects are expected to influence the pulse shapes in at least two ways, one
of which is .patiat aveagZng. In SF experiments the initial inversion density, no(r), is
radially dependent since the pump light pulse typically has a Gaussian-like profile.8  In
the absence of diffraction this cylinder can be thought of as a set of concentric cylindri-
can shells, each with its own density, tipping angle and delay time9 . The radiation will
thus be a sum of plane-wave intensities; when the entire output-s gnal is viewed the ringing
averages out, resulting in an asymmetric pulse with a long tail.1

A second transverse effect, diiiraction, causes light emitted by one shell to affect the
* emission from adjacent shells. This cross-coupling mechanism, which causes transverse ener-

gy flow, is more important for samples with small Fresnel numbers F.

Furthermore, SF is inherently a tcan~vetse e6ee.t problem even for large F samples since
* the off-axis modes are not discriminated against. This work is the first to correctly in-

clude this crucial element.

Our analysis adopts the coupled Maxwell-Bloch equations, which take fully into account
propagation and transver effects. Previous approaches examined transverse effects in the
mean field approximation , or included a loss term in the Maxwell equation to describe dif-
fraction..,5,52 Thus, our model possesses a long sought after degree of realism.1

3a

Equation of motion

The simulations are based upon an extension of a modell 4 which describes transverse ef-
fects observed in self-induced transparency experiments.15  For simplicity the influence of
the backward wave, being negligible,1 6 is not presently considered, and cyV irical symmetry
is assumed. Relaxation of its simplification will be discusses elsewhere 0  . The equa-
tions of motion arel4:

&- g P (with g, the nonlinear gain, sustaining radial density (la)S.. Tvariations)

7T *-P/T, & n (lb)

an n - Re(P*/) (1c)

where and P are the slowly varying complex amplitudes of the electric field and polariza-
tion, respectively, n is the inversion density, T = t-z/c is the retarded time, P is the
transition dipole moment matrix element and T1 and T, are the population relaxation and po-
Iarization dephasing times. Diffraction is taken into account by the Laplacian term

1 a a where o = r/rp, with Fresnel number F = 7r2/XL rp = radius of the initial,T 2 = rZ F 7 (P p5"

inversion density at half maximum, and L = sample length. The boundary conditions are
/3r = 0 on the axis (r=0) and at r = ®. To insure that (1) the entire field is accurate-

ly simulated, (2) no artificial reflections are introduced at the numerical boundary rm >r
and (3) fine diffraction variations near the axis are resolved; the sample cross-section iR
divided into nonuniform cells, and is surrounded by an absorbing shell.

4 Equations (1) are numerically integrated subject to the initial conditions n = no cos
P Z u + iv m uno sin eo (cos 6t * i sin f), which correspond to an initial tipping angle eo
and a phase (horizontal tilt) angle 0. The initial inversion density in the experime'nt is
radially dependent; r-dependence of no and/or e0o is allowed for in the computations.

* Numerical results. Figure !a displays results where spatial averaging is present hut
. diffraction is absent, by setting F = - in Eq. (la). In this figure the emitted power of

SF pulses is plotted for samples with uniform and Gaussian profiles of no(r) and 0o(rl ( is
constant). Here, ringing reduction due to spatial averaging of independent concentric

* shells, (each emitting in a plane-wave fashion), is studied. For a given (, the case of o
and no both constant (curve i), the uniform plane-wave limit, exhibits strong ringing. 4'
In curve ii, in which no is Gaussian (no(r) = no expL-ln2(r/rp)i) and eo and 1 are uniform,
the ringing is largely averaged out, resulting in an asymmetric pulse with a tail. An
essentially identical result (curve iii) is obtained for no and 90 both Caussian (to = 00
exp E0.5 ln2(r/rp) 2

]), showing that the ringing is predominantly removed by a (ausqiau 0
no regardless of the radial dependence of Oo. This is expected since the output pulse
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- parameters are all dependent only on lin 6.1.9 As shown in Fig. lb, with uniform no and eo
but with diffraction included, the output is almost symmetrical and also nearly free of
ringing for F < 0.4.

Figure 2(a) studies the effect of diffraction on the SF pulse shapes by varying F, using
Gaussian no as in Fig. l(a), curve ii. Reducing F curtails the oscillatory structure and
makes the output pulses more symmetrical, since the diffraction coupling between the minimum-
delay center portions of the excited cylinder and the outer cylindrical shell causes the
delays of the latter to be reduced. Consequently, outer shells are stimulated to emit ear-
lier. This allows more of the cylinder to emit at the same time; the overall delay is
lenghtened slightly and the asymmetry from the Gaussian average is reduced. Thus, diffrac-
tion becomes more important as F decreases.

Figure 2(b) is an isometric graph of the intensity build-up for a sample with F = 1. The
radial variations of intensity peaks, delay and ringing illustrate how different gain shells
contribute independently to the net power. Each shell exhibits a different Burnham-Chiao
ringing pattern. Accordingly, their contributions to the net signal interfere and reduce
the ringing. However, the central portion of the output pulse should exhibit strong plane-
wave ringing. In fact, the ringing observed in the HF experiments 2 may have been just that,
since the detector viewed a small area in the near field of the beam.

Figure 3 compares the normalized Cs SF data of Ref. 3 and 13b (for which F - 0.7 with
uncertainty ranging from 0.35 to 1.4) to the theory (including relaxation terms). The data

* were fitted using a Gaussian n0 and a uniform 8 with nominal value7 Oo X 2/Jn8 •rrL, no
* . being adjusted to yield the observed delays (I.g to 2.8 times the experimental no values).
* However, in Ref. 3 the curve published at each density was the one having the shokte.t delay.

The avetage delay is - 30% greater at each density 7 . Thus, the e6ezecve ratios of our
computed densities to the experimental ones range from 1.2 to 2.1, compared with the *60%,

* -40% quoted experimental uncertainties. The quantum calculations actually yield 0o
(2/J")[£n(2n,1/8]1/2, a 9% correction which further reduces the range to 1.14 - 2.0. Should
one adopt Gibbs and Vrehen's decision to set 0o 

= 6/4 following the small injection experi-
ment 1 6 , the range is I - 1.8, yet closer agreement. The calculated shapes are in good agree-
ment with the data, and are within the range of shot-to-shot fluctuations (Fig. 3(a)). The
only discrepancy is that the simulations predict more of a tail than observed in the expe-
riments. For comparison, Fig. 3(b" also plots the fit in Ref. 3b of the one-dimensional
Maxwell-Schrodinger theory 4 . As can be seen, the present theory gives a more accurate fit,
illustrating the necessity of including transverse effects. The pulse tils are further
curtailed by reducing F within the range of experimental uncertainties1  (which used a
l/e rather than a HWHM definition of r ). Note that often a Fresnel number F' defined as
"r2 /XL" is used; diffraction effects bgcome important when F' 1 (i.e., when F = 0.36). If
ong includes inhomogeneous broadening: one finds that the tail is further reduced as dis-
played in Fig. 4. The reduction of T1 from -, to 300 and 32 nsec (for graph. 1, 2 and 3
respectively) shortens the delay, reduces the asymmetry and depresses the tail.

The dependence of the delay measured by the peak location, the pulse width and the peak
intensity on the Fresnel numbers F, the radiation time and the tipping angle are illustra-
ted in figure 5.

One can examine fluctuations in the calculations either1 directly (a) by allowing both
in-phase and out of phase components of P to vary randomly according to a normal distribu-
tion or b) through the concept of the tipping angle by including statistics7a,7b in
S90 log (i/x) -(with x is a uniform random number) and in 47c(varying randomly from 0 - .r
in a uniform fashion). An ensemble of these calculations is carried out to simulate shot-

*to-shot experimental situations; the input eo of all these individual segments obeys a
Gaussian staistics distribution. Their selection is such that their number can be kept
to a minimumc.

One finds that those fluctuation calculations acceetained the importance of including4 transverse effects. The influences of a quantum initiation in the transverse simulation
clearly appear in the delay reduction, the pulse symmetrisation and the tail curtailment.

* Figure 6 outlines those statistics results in both planar and non-planar geometries.
Figure 7 contrasts the situation in average initial tipping angle with the quantum statis-

* .tics.
In smmar trasvere efect 1 8 ,19

In summary, transverse effects are cuc af for an accurate description of super-
fluorescence.

* * p . P(A) e - )2

One needs to be careful in not upating the value of a along : as was accidently intro-
duced into the program but corrected by P'.11. Gibbs and F. Watson); otherwise, e Fluctuates
in a random walk instead of a Gaussian way.
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In future work,counter beam propagation in the SF evolution needs to be verified1  The
initiation and calculations should allow three spatial degrees of freedom (i.e., two trans-
verse dimensionsl'*, so that transverse modes can compete. Furthermore, the effqqt of pump
dynamics and reshaping need to be rigorously assessed as outlined in reference

Conclusion

The results provide the first complete explanation of the absence of ringing, and for the
first time, quantitative agreement (within measurement uncertainties) with the definitive
Cs experiments
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Figure captions

Figure 1. Normalized SF output power vs. T' 
TR %X/4 2 ,I2no L 8'Tr /3no X2L. 60 0=

2X10 ' , T: T7 = TA =-; L/CTR = 3.9, (a) F = - (see text). (b) game as ?a) but with dif-
fraction incluaed aid uniform no(r) and 8 (r).

Figure 2. Influence of diffraction on 9F pulse shapes. Parameters are the same as in
Fig. la, with no Gaussian and 60 uniform. (a) Emitted power; (b) Isometric graph of inten-
sity for F = 1 case of Fig. 2a.

Figure 3. Theoretical fits to Cs data of Ref. 3. The two curves in (a) indicate typical
experimental shot-to-shot variations. F = 1, L = 2 cm, T1 = 70 ns, T2 = 80 nsec, A = 2.931p,
Ta = 551 nsec, e0 uniform or Gaussian, no(r) is Gaussian. The following give 0(fit),
n0 (fit), ng(exp), with 0 in units of 10-4 and no 10'°/cm3 : (a) 1.07, 31, 19; ?b) 1.37, 18,
7.6; (c) 1.69, 11.9, 3.8; (d) 1.96, 8.85, 3.1. The broken-line curve in (b) is the one-
dimensional fit of Ref. 3b, with e0° 1.69 and no = 12.broenn is clal ilutae . ingrp

Figure 4. The effect of the inh 8mogeneous broadening is clearly illustrated T,* in graph
(a) for Burnham-Chiao ringing (the value T,* in curve 1 is infinite while it is 100 ns in
curve 2), and is illustrated in graph (b) for the Cs experiment (T2 * =, 300, 32 ns for
curves 1, 2, 3 respectively). The power output curve is more symmetric, the peak appears
sooner, and the tail is reduced furthermore.

Figure 5. The output power characteristics are the delay (temporal peak location), the
* peak power (maximum) and the temporal width {(fr p(r) d r / C! p(r) d T]}. They are plotted

:- as a function of the inverse Fresnel number for two different tipping angles with infinite
relaxation times in graph (a) for large gain typical to the Burnham-Chiao ringing case with
relaxation times included, and in graph (b) for the Cs data in graph (c) versus the square
logarithm of the tipping angle for uniform, Gaussian and super-Gaussian densities. Graph (d)

. displays the dependence of the output power curve characteristics as a function of rR (equi-
valently, the inverse square gain) for various relaxation times namely T1 , T2 -

* (70,80); (60,80),

Figure 6. The initiation is simulated using non-uniform random statistics instead of the
average tipping angle. Both vertical tipping angle eo and horizontal phase angle 4 are be-
ing varied at each and every grid point. e0 obeys a normal probability distribution as sug-

*gested by Glauber & Haake (7a) and Schuurmans, Polder and Vrehen (7b); whereas 4 varies
uniformly between 0 and 27 as suggested by Hopf (7c). An equivalent fluctuation calculation
can be carried out by allowing directly a random variation for both in-and out-of-phase com-

*. ponents of the polarisation p. Graph (a) and (b) display the uniform plane wave theory for
random tipping angles and for random p respectiveiy. Graph (c) represents, for a uniform
plane wave calculation, an isometric comparison between the output pulse of the various seg-
ments of the statistical ensemble at a given propagation length (note that the axes are T
and NBruns). Graph (d) represents the histograms of the tipping angle a fluctuation and of its
phase angle 4. Graph (e) represents the histogram on characteristics of the output pulse for
a planar simulation with 37 segments (NBruns*37): in curve (i) the peak location (delay); in
curve (ii) the magnitude of the pulse peak; and in curve (iii) the pulse width. The result of
our delay fluctuations confirmed Haake et al's planar calculations. Graph (f) compares the

.- mutual influence of diffraction and inhomogeneous fluctuation in the tipping angle e and its
phase angle 4. Graph (g) displays the isometrics of the output intensity and the associated
global histograms for the various segments of the statistical ensembles summarized in Graph

.. (f). Graph (h) duplicates the situation in Graph (f) but with a random P instead of random
e x 4; the tail curtailment is maintained. Note the random variation in peak magnitude, peak
location and pulse with. The combined effect of diffraction and statistics shortens the delays,

- curtails te tail and makes the puke even more symmetric as experimentally observed in the Cs
" data.

* Figure 7. The output power is contrasted for various situations where statistics are present
*.,. directly through p (Irand - 4) or through 6 and 4 (Irand = 2) or are absent (Irand = 0); pla-

nar and non-planar analyses are represented through Idimen 1 or 3.
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EFFECTS OF PROPAGATION, TRANSVERSE MODE COUPLING AND DIFFRACTION ON

NONLINEd -LIGHT PULSE EVOLUTION

F.P. Mattart

Aerodynamics Laboratory, Polytechnic Institute of

New York, Farmingdale, New York 11735

Abstract: The effective computational methods developed to
efficiently tackle transverse and longitudinal reshaping. associated
with single-stream and two-way propagation effects ii cooperative
light-matter interactions, using the semi-classical model are
described. The mathematical methods are justified on physical
grounds. Typical illustrative results of propagation in resonant
absorbers, amplifiers and superfluorescence systems are presented.

I. INTRODUCTION

This paper reviews the unified mathematical methods developed
for three-dimensional simulation of several physical phenomena pre-
viously studied independently. The same basic al orithn with some
alterations will simulate both superfluorescencel lf and optical bi-
stability3'4 . With extra modifications, it can also analyze four-
wave mixingS and phase conjugation6 systems. Further applications
include two-way Self-Induced Transparency7 and Soliton Collision8

studies.

The proposed model evolved as a result of close collaboration
with the experimentalists, H.M. Gibbs 9 "13 , S.L. McCall 1 1-1 3 and
recently, M.S. Feld13 , enhancing the rate of progress in the re-

oWork jointly sponsored by the Research Corporation, the Inter-
national Division of Mobil Corporation, the University of Montreal,
the U.S. Army Research Office, DAAG29-79-C-0148 and the Office of
Naval Research, NOOO-14-80-C-0174.
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search and leading to a better understanding of basic cooperative
effects in light-matter interactions. Quantitative analyses in
superfluorescence were obtained and are being developed in optical
bistability.

The model encompasses propagation that includes rigorous dif-
fraction 6' 15, time-dependent phase variation, off-resonance 16 as
well as nonuniform excitation 9 and transverse and longitudinal
boundary conditions1". (An additional control probe-beam is being
developed 21.)

The adoption of proven computational techniques, developed by
"oretti22 24 in aerodynamics, to solve problens in the laser field,
is justified by the analogy between fluid and wave propagation
problems described. The laser beam evolution can be interpreted in
terms of an equivalent flowing fluid2S whose density is proportion-
al to the laser field intensity, and whose velocity is proportional
to the gradient of the field phase. This description allows for
the treatment of more slowly varying dependent variables and yields
to governing equations of motion, which are a generalization of the
Navier-Stokes equations26 . In the fluid formulation, the equiva-
lent fluid is compressible and is subjected to an internal poten-
tial, depending solely and nonlinearly upon the fluid density and
its derivatives; this is called the "quantum mechanical potential."
Furthermore, the field scalar wave equation mathematically cor-
responds to a complex heat diffusion equation with a non-uniform
functional source; while the Bloch equations, in a rotating frame,
are structurally similar to the torque equation2 7 . For two-way
problems, the simultaneous set of quasi-optic field equations (one
for each traveling wave) play the same preponderant role as Euler
equations in shock calculations for fluid dynamics problems.

Quite different effects, i.e., self-lensing 8 , self-phase
modulation29 , self-spectral broadening30  and self-steepening31,
previously studied separately, combine here to modify the pulse
behavior diversely at different positions and times. For example,
the interplay of diffraction coupling through the Laplacian term
and the inertial response of the non-uniform pre-excited medium
will inevitably redistribute the beam energy spatially and tempo-
rally32 . This transient one- or multi-beam transverse reshaping
will profoundly affect the performance of any device that relies
upon it. Specifically, this pragmatic, three-dimensional analysis
helps in the interpretation of recent experimental results in
superradiance, superfluorescence, optical bistability and active-
mirror amplifiers for laser-fusion. It also accounts for deviations
and departures between recent experimental observations and predic-
tic s of planar wave theory (see Fig. (1)).

To circumvent excessive memory requirements while insuring
adequate numerical resolution, one must resort to nonuniform

K-.. .:- " 'mm..i h~sl--l~ l" .-a- ''a''' -



EFFECTS OF PROPAGATION AND TRANSVERSE MODE COUPLING 505

meshes. In this large computational problem, the calculational
efficiency of the algorithm chosen is of crucial importance. A
brute force, finite difference treatment of the governing equa-
tions is not feasible. Instead, by using the details of the
physical processes to determine where to concentrate the computa-
tional effort, accuracy and economy are achieved. For example, if
for self-focused beams, a fixed transverse mesh is used, a lack of
resolution (see Fig. (2)) may result. A non-negligible loss of
computational effort in the wings of the beam will also occur.

Coherent Pulse Propagation Fig. 1. The state of the art
in coherent pulse propagation

I. Usual Theory le is displayed. The theoretical
effort was restricted to a uni-

1 Dim. =(p) , form plane wave prior to the
work of Newstein et al; where-

'Uniform Plane Wave' as the usual experiment was
carried out using a Gaussian

II. Usual Experiment beam. To simulate a uniform
-.2 plane wave, the smallest possi-

.=(p) • ble detector diameter was se-
lected as compared to the Gaus-

sian beam diameter (i.e.,
(i.e., ddetector " deam )

In particular, evenly-spaced computational grid points are
related to variable grids in a physical space by adaptive stretch-
ing (Fig. (3)) and rezoning (Fig. (4)) techniques. This mapping
consists either of an a priori coordinate transformation or an
adaptive transformation (Fig. (5)) based on the actual physical
solution. Both stretching transformation in time and rezoning
techniques in -pace are used to alleviate the computational ef-
fort. The propagation problem is thus reformulated in terms of
appropriate coordinates that will automatically accommodate any
change in the beam profile

3 4 " °.

Fig. 2 (a) Isometric represen-
tation of the beam cross-section
as it experiences self-focusing:
The cross-section decreases as

b a function of the propagation
distance; (b) An isometric
display of the time integrated
field energy as a function of p
and q to illustrate the resolu-
tion limitation associated with
uniform mesh.

a.

I ' ' •• - = , b , , , . m , = . ..,. . .. ...L



i-I

506 F. P. MATrAR

OA, i=NouGaussian Fig. 3. Non-uniform pre-
Physical Time scribed temporal stretch-

T=Uniform Com ing.
putational
time

The resultant dynamic grid removes the main disadvantage of
insufficient resolution, where uniform Eulerian codes generally
suffer. Furthermore, the advantages of grid sensitivity can be
obtained by either using adequate rezoning and mapping in Eulerian
coordinates or by simply using traditional Lagrangian me-
thods41 '4 2 . Thus, the convenience of moderate memory requirements
can be combined with the desirable numerical resolution should one
rezone the grids. The techniques due to Moretti3 3 will economi-
cally generate precise results. Although this appears surprising
because of the mesh coarseness, his technique succeeds because it
discriminates intelligently between the different domains of the
critical physical parameters.

Figure 4. Two-dimensional prescribed
rezoning for p and n. As the beam
narrows the density of transverse
points and the transmission planes
increase simultaneously.

p\

Fig. 5. Self-adjusted two-dimensional
rezoning for p and n to follow more closely
the actual beam characteristics. The I
(normalizing) Gaussian reference beam is
redefined during the calculation.6

.. o
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For the two-beam analysis, our approach relies on one-way
nonsymnetric discretizations of the longitudinal and transverse de-
rivatives as well as nonuniform grids. Numerical instrumentation is
unavoidable. The role of characteristics as information carriers
is emphasized and therefore the law of forbidden signals cannot be
violated4 3. The physical subtleties of the nonlinear problem can
be adequately implemented.

Interactive graphic software was developed to simplify the
physics of extraction from these complex codes. Structural modular
programming techniques are used, making the program easier to read,
maintain and transport as well as for further extensions and gene-
ralizations of the planar wave theory. The resultant code is
deceptively simple and easy to follow. This mathematical modeling,
motivated by Gibbs' and McCall's experimental work, is engineering
physics in its purest sense: its main goal is to obtain a numeri-
cal solution to and insight into a real physical problem, instead
of reaching a neat analytical solution to an idealized problem of
limited applications.

II. SIT/SUPERFLUORESCENCE EQUATIONS OF MOTION

In the slowly varying envelope approximation, the SIT dimen-
sionless, semi-classical field-matter equations15 (which describe a
system in a cylindrical geometry with azimuthal symmetry), are:

-iF VTe + =e (1)

VaP/at = eW - (iffi + 1/t2)0 (2)

and

"W/aT -1/2(e*4P+ eP*) - (W-We)/v 1  (3)

where

e = (2p/h)t e', and P (2/PL', (4)
p

E = ReCe'exp~i(K/C)Z-Wt)fl; (5)

with We the equilibrium value of W, subjected to the initial and

boundary conditions.

1. for T > 0: e 0, W Wi, 1i known function to take

into account the pumping effects or the initial tipping
angle.

4
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2. for q = 0: e is given as a known function of I and p;

3. for all n and T: [(e/8p] P 0 and [De/ap]p=paax vanishes

(with p . defining the extent of the region over which

the numerical solution is to be determined).

with k/c = w (6)

and Vfe Z [ A up )1; (7)

after applying l'Hopital's rule, the on-axis Laplacian reads:

~8P2 V2 2 e (8)

P = i Re[#' exp{i(Kc/c)z-kt)]. (9)

The complex field amplitude e, the complex polarization density P,
and the energy stored per atom W, are normalized functions of the
transverse coordinate p = t/tp, the longitudinal coordinate q=zx

aeff, and the retarded time i = (t-zn/c)rp (see Fig. (6)). The
time scale is normalized to the full width half maximum (FWHMf)
input pulse length, Y and the transverse dimension scales to the

p
input beam spatial width rp. The longitudinal distance is normal-

ized to the effective absorption length,44  where

2N IT2
""tff = (ap ' (10)

Here, w is the angular carrier frequency of the optical pulse,
p is the dipole moment of the resonant transition, N is the number
density of resonant molecules, and n is the index of refraction of
the background material. The dimensionless quantities p

%I = Tj/:p, and 12 = T2/p measure the offset of the optical car-
p p

rier frequency w from the central frequency of the molecular reso-
nance wo, the thermal relaxation time TI, and the polarization
dephasing time T2 , respectively.

. Even in their dimensionless forms, the various quantities have
a direct physical significance. Thus o is a measure of the compo-
nent of the transverse oscillating dipole moment (p has the proper
phase for energy exchange with the radiation field). In a two-level
system, in the absence of relaxation phenomena, a resonant field
cause each atom to oscillate between the two states,

,S,
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W&-1 and Wt+1, at a Rabi frequency fR =e/2t p= WNWEe. Thus e
measures how far this state-exchanging process proceeds in rp"

* cT

O3Z

ALONG,7
t J J. (CONSTANTr)

C . C'h, Czh

(a) (b)

Fig. 6. Graph (a) displays the retarded time concept. Graph (b)
outlines the numerical approach: a marching problem along rj for
the field simultaneously with a temporal upgrading of the material
variables along T.

The dimensionless parameter, F, is given by F=(aeff) /(4nr.).

The reciprocal of F is the Fresnel number associated with an aper-

ture radius r and a propagation distance (a eff). The magnitude
pef

of F determines whether or not one can divide the transverse
dependence of the field into "pencils" (one per radius p), to be
treated in the plane-wave approximation.

As outlined by Haus et a145 , the acceptance of equations
(1-3) implies certain approximations: eq. (3) shows that th
product 'ep' of the electric field e and the polarization 6'
causes a time rate of change in the population difference leading
to saturation effects. Inertial effects are considered.

III. IMPORTANCE OF BOUNDARY CONDITIONS

When the laser beam travels through an amplifier, the trans-
verse boundary- has an increasingly crucial effect compared to the

- absorber situation. The laser field which resonates with the
pre-excited transition, experiences gain; the laser which encoun-
ters a transition initially at ground state, experiences resonant
absorption and losses. A greater portion of the pulse energy is
diffracted outwardly in the amplifier than in the absorber 46.
Consequently, these boundary reflection conditions play a substan-
tial role in the amplifier dalculations and obscure the emergence
of any new physical effects. Acceptable results are achieved only
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by carefully coupling the internal points analyzed with the bound-
ary points 7 . Special care is required to reduce the boundary
effect to a minimum such as using non-uniform grids and confining
the active medium by an absorbing shell.

In practice, the transverse boundary is simulated by imple-
menting an absorbing surface and mapping an infinite physical
domain onto a finite computation region (see Fig. (7)). In Fig.
(8), the first and second radial derivatives and the Laplacian term
are drawn. Figure (9) contrasts in the stretched radial coordinate
system, the transverse coupling and the electric field. The nuer-
ical domain sensitivity and the physical dependence on the boundary
conditions can be readily assessed.

p

(a) (b)

Fig. 7. Graph (a) shows non-uniform stretching of the transverse
coordinate. Graph (b) contrasts the Gaussian beam e dependence
with the nonuniform physical radius p. Both graphs are plotted
versus the uniform mathematical radius R.

Fig. 8. This graph illustrates the dependence of the radial
mapping and the derivatives on the different parameters versus the
uniform mathematical radius: First weighting stretching factor
OR/Op; 2nd weighting stretching factor, a2R/ap 2 ; weighted dif-
fraction term, V1,R.



EFFECTS OF PROPAGATION AND TRANSVERSE MODE COUPLING 511

l I Fig. . This figure con-
trasts the Laplacian depen-
dence '.' for a given
Gaussian profile 'e' for
various non-uniform radial
point densities.

IV. PRESCRIBED STRETCHING

The numerical grid is defined by widely-spaced computational
nodes in the area most distant from the plane of interest and by
densely clustered nodes in the critical region of rapid change; the
latter being in the neighborhood of maxima and minima, or for
multi-dimensional problems, in the vicinity of saddle points.
Resolution is sought only where it is needed. The costs involving
computer time and memory size dictate the maximum number of points
that can be economically employed. In planning such a variable
mesh size, the following must be kept in mind:

(A) The stretching of the mesh should be defined analytically so
that all additional weight coefficients appearing in the
equations of motion in the computational space, and their
derivatives, can be evaluated exactly at each node. This
avoids the introduction of additional truncation errors in the
computation.

(B) To assure a maximum value of AT, the mathematical grid step,
the minimum value of AT, the physical time increment, should
be chosen at each step according to necessity. This means
that the minimum value of AT must be a function of the pulse
function steepness.

4 (C) The minimum value of AT should occur inside the region of the

highest gradient which occurs near the pulse peak.

For example, following Moretti's approach,3 2 if

T=tanh(aT) (11)

and a the stretching factor must be larger than 1, the entire semi-
axis T greater than zero can be mapped on the interval 0 < T < 1

,4
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with a clustering of points in the vicinity of T 0, the center
of gravity of the transformation for evenly-spaced nodes in t.

This mapping brings new coefficients into the equations of
motion which are defined analytically and have no singularities.
It avoids interpolation at the coon border of differently spaced
meshes. The computation is formally the same in the "T" space as
it was in the "T" space. Some additional coefficients, due to the
stretching function, appear and are defined by coding the stretch-
ing function in the main program. A slightly modified stretching
function is used in the laser problem. Figure (10) illustrates the
transformation and its different dependencies on the particular
choice of its parameters.

(c)

(a) (b)

".; Fi$. 10 Dependence of prescribed stretching T and its derivatives
1T on the point densities and the center of transformation

" versus the uniform computational T.

:", The derivative of the mapping function produced by the gradual

.'.variation along the "T" axis is also defined analytically. In
• response, the computational grid remains unchanged while the physi-

~cal grid (and the associated weighting factors) can change a lot.

Should one need to study the laser field buildup due to ini-
tial random noise polarization (for superfluorescence), or an
initial tipping angle (for superradiance), one must use a different
stretching" . This stretching is like the one defined for treating

i !iradial boundary conditions. The mesh points are clustered near the

beginning (small i); their density decreases as T increases.

-, - . - ' , Im.. - - --'
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V. ADAPTIVE STRETCHING IN TIME

As the energy continues to shift back and forth between the
field and the medium, the pulse velocity is modified disproportion-
ately across the beam cross-section. This retardation/advance
phenomenon in absorber/amplifier can cause energy to fall outside
the temporal window. Also, due to nonlinear dispersion, various
portions of a pulse can propagate with different velocities, caus-
ing pulse compression. This temporal narrowing can lead to the
formation of optical shock waves. To maintain computational accu-
racy, a more sophisticated stretching is needed. The accumulation
center of the nonlinear transformation is made to vary along the
direction of propagation. This adaptive stretching will insure
that the redistribution of mesh points properly matches the shifted
pulse, Figure (11).

Fig. 11 Adaptive stretch-
ing with different centers
of transformation.

Here, the transformation from T to T is applied about a center
T c which is a function of q. The stretching factor a could also be
a function of r.

The field equation is similar to those of Section II, but
contains an extra term:

-iFVpe+ 2 qe 8- a T dcT , p -T] n (12)

The role played by the time coordinate is different: an ex-
plicitly time-dependent term is now included.

VI. REZONING

The main difficulty in modeling laser propagation through
inhomogeneous and nonlinear media stems from the difficulty of
pre-assessing the mutual influence of the field on the atomic
dynamics and vice versa. Strong beam distortions should occur
based on a perturbational treataent of initial trends. One must

4" . .o
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normalize out the critical oscillations to overcome the economical
burden of an extremely fine mesh size. To insure accuracy and
speed in the computation, a judicious choice of coordinate systems
and appropriate changes in the dependent variables, which can
either be chosen a non or automatically redefined during the
computation, must be considered (Figure (12))33 "40.

This coordinate transformation alters the dependent variables
and causes them to take a different functional form. The new
dependent variables are numerically identical to the original
physical amplitudes at equivalent points in space and time.

The requirements of spatial rezrninr will be satisfied by
simultaneously selecting a coordinate transformation (from the

i0

Sa)(b)

Fig. 12. The concepts of prescribed rezoning are shown in Graph
(a); Graph (b) is a close-up of the nonuniform mapped grid of
Fig. 2(b).

original coordinates p and n to new coordinates t and z) and an
appropriate phase and amplitude transformation. The chosen func-
tion transformation will share the analytical properties of an
ideal Gaussian beam propagating in a vacuum.

Since the parameter a, the measure of the transverse scale,
shrinks or expands as the beam converges or diverges, it is logical
to require the transverse mesh to vary as "a" varies. However, to
assure stability and convergence, the ratio [A1/(Ap)2 ] must be
defined according to the chosen Fresnel number and it must be kept
constant throughout the calculation. Accordingly, a new axial
variable, z, must be introduced to keep this parameter constant as
p varies. This should increase the density of n planes around the
focus of the laser field where the irradiance sharply increases in
magnitude causing a more extensive and severe field-material inter-
action to occur.

If the quadratic phase and amplitude variation are removed
4 from the field and polarization envelopes, the new field equation

eqato
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varies more slowly than its predecessor; thus, the numerical pro-
cedure allows one to march the solution forward more economically
by using larger meshes.

VII. ADAPTIVE REZONING

The foregoing concepts may be generalized by repeating the
simple coordinate and analytical function transformations along the
direction of propagation at each integration step. Figure (5) and
graphs (13a) and (13b) illustrate this self-adjusted mapping in
planar and isometric graphs.

The feasibility of such automatic rezoning was demonstrated by
Moretti in his conformal mapping of supersonic flow calculations3 4 ,
and by Hermann and Bradley in their CW analysis of thermal bloom-

Fig. 13. Graph (a)
illustrates the self-
adjusted rezoned grid;
Graph (b) shows the
usefulness of adaptive
two-dimensional map-

I ping through isometric
representation of the
field fluency.

(a) (b)
ing35. In particular, the change of reference wavefront technique

consists of tracking the actual beam features and then readjusting
the coordinate system. The new axial coordinate z is defined as
before. Previously, the center of the transformation where the
radial mesh points were most tightly bunched was at the focus
(z = q = 0). Now the transformation is defined in terms of an
auxiliary axial variable zt as a function of z, which is calculated

4 adaptively, in a way that reflects and compensates the changing
physical situation.

In this adaptive rezoning scheme, the physical solution near
the current z plane is described better by a Gaussian beam of neck
radius ato whose point is a distance zt away than by an initially

assumed Gaussian beam with parameters a0 and z. In addition, to



-7-

516 F. P. MATTAR

remove the unwanted oscillations, new dependent variables are
introduced without quadratic and quartic radial dependence in the
phases of the pulse and polarization envelopes. By minimizing the
local field phase gradient the relationship between the auxiliary
zt and z is obtained. Thus the rezoning parameters are determined

appropriately from the local field variable at the preceding plane,
so the new variable at this present point has no curvature. Note
that the new equation varies less in its functional values than the
original. The numerical computation is significantly improved.
Notably, the instantaneous local rezoning parameters of the quad-
ratic wavefront are determined by fitting the calculated phase of
the local field to a quartic in the nonuniform radius. More speci-
fically, the intensity-weighted square of the phase gradient inte-
grated over the aperture is minimized. Consequently, the curvature
at the highest intensity portion of the beam contributes the most.
Various moment integrals of the local field variable and the local
transverse energy current will be introduced, to specifically
evaluate the adjustable rezoning parameters.

VIII. NUMERICAL RESULTS

This section outlines basic results in SIT, obtained with and
without rezoning and stretching, and illustrates why the more
sophisticated techniques required less computational efforts.

The first part of this investigation led to the discovery of
new physical phenomena which promise to have significant applica-
tions for proposed optical communications systems. It had been
shown that spontaneous focusing can occur in the absence of lenses,
and that the focusing can be controlled by varying the medium para-
meters. The second part of this analysis dealt with amplifiers.

The dependence of the propagation chararteristics on the Fres-

nel number F associated with an effective medium length, on the
on-axis input pulse "area," on the relaxation times and on the
off-line center frequency shift, has been studied. Furthermore,
particular care was exercised to ensure a perfectly smooth Gaussian
beam (see Figure (10)) thereby eliminating any possibility of
small-scale, self-focusing buildup4 s .

The time-integrated pulse "energy" per unit area,

fle(p,n,T')1 2dT, the fluency, is plotted for various values of the
0
transverse coordinate, as a function of the propagation distance
(see Fig. 14).

., * ----*------
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Fig. 14. The longitudinal orientation shown in the left-hand
figure illustrates the gradual boosting mechanism that field energy
experiences as it flows radially towards the beam axis (while q
increases). The second orientation displays the severe beam dis-
tortion in its cross-section as a function of q.

The three-dimensional numerical calculations substantiate the
physical picture based on a perturbational study r" the phase
evolution1"#15 . It could be visualized using selecteu frames from
a computer movie simulation of the numerical model output data. In
the left-hand curves of Figure (15) the transverse energy current
is isometrically plotted against the retarded time for various
transverse coordinates at four specific regions of the propagation
process: (a) the reshaping region where the perturbation treatment
holds; (b) the buildup regions; (c) the focal region; and (d) the
post-focal. region. The field energy is displayed for the specific
regions in the right-most curves of Fig. (15). A rotation of the
isometric plots is displayed in Figure (16), to emphasize the ra-
dially dependent delay resulting from the coherent interaction.
Positive values of the transverse energy current correspond to
outward flow, and negative values to inward flow. The results of
the reshaping and buildup regions in Figures (15) and (16) agree
with the physical picture related to the analytic perturbation dis-
cussed elsewhere.

*The burn pattern, iso-irradiance level contours (against I and
p) for different propagation distances are shown in Figure (17).
Severe changes in the beam cross-section are taking place as a
function of the propagating distance. At the launching front, the
beam is smooth and symmetrical; as the beam propagates into the
nonlinear resonant medium, the effect of the nonlinear inertia
takes place.
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The general format for presenting three-dimensional coherent
pulse propagation in amplifying medium will be the same as for the
absorber (see Figs. (18) to (21)).

~(a)

(b)

....
goo

"-..- 
(¢1 )

Fig. 15. Isometric plots of the absorber field energy and trans-
verse energy flow, against the retarded time for va-.ious transverse
coordinates at the four regions of interest.

IX. TRANSVERSE EFFECTS IN SUPERFLUORESCENCE

With the help of Gibbs, the outstanding question dealing with
*! the strong reduction (and elimination) of ringing observed in the

low-density Cs [2] experiment from the amount predicted in the
one-dimensional calculations [1(b)] was resolved. This was accom-
plished by developing a rigorous two-dimensional theory of Burnham-
Chiao ringing 1Ib) and superradiance and superfluorescence (SF) in
a pre-excited thick medium using a semi-classical formulation [le]
which includes one-way propagation effects as in SIT. The initia-
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tion of the SF emission process is characterized by a tipping angle

R ' When the small signal field gain aeffL/
2 (or equivalently, the

characteristic radiation damping time TR of the collective atomic

system) is sufficiently large, e , the ratio of the length L to the
coherence length L , and the Frenel number 7 (equal to area/AL)
completely charactirize the system behavior. However, L/LC is not
a critical parameter as predicted by the mean field theory.

I.. i/. j

(b)

(4 (d)
Fig. 16 Isometric plots of the absorber field energy and trans-
verse energy flow profile for various time slices at the four
regions of interest.
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T/

Fig. 17. Absorber field energy contour plots for the four propaga-
tion distances. Notice the temporal delay associated with the
coherent exchange of energy between light and matter, as well as
the beam cross-section narrowing.

71

Neither the mean-field approximationsid, nor the substitution

of a loss term to account for diffraction coupling C20d, are
considered; instead self-consistent methods similar to those devel-
oped for SIT studies are adopted 9'4 . The numerical simulation
takes fully into account both propagation and transverse (spatial
profile and Laplacian coupling) effects.

The previously reported pronounced SF ringing for plane-wave
simulation is reproduced for uniform input profile. The reduction
of ringing is studied for various radial profiles for the gain
gReff[CTR] (equivalently, the population inversion) and the small

input pulse area 0R

The ringing reduction can be explained by two physical mechan-

isms: (a) a shell (ring) model32(d): spatial averaging of uncoup-
led planar mdes, each associated with a particular shell and sub-
jected to both a distinct 0R and a radiation time. Radial averag-

ing by a Gaussian gain profile of very large 7 eliminates most of
the ringing, resulting in an asymmetric pulse with a long tail; and
(b) a rigorous diffraction coupling: through the Laplacian term,
the adjacent shells interact, causing the field energy to flow
transversely across the beam from one region to another.

When diffraction coupling is considered concomitantly with
radial variations of eR and g (i.e., of i), the ringing is more

subdued (see Fig. (23)). In other words, reducing 7 of a Gaussian
profile does reduce the asymmetry (in better agreement with the Cs
data) since the outer beam portions are stimulated to emit earliere
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~(a)

(b)

(c)

(d)

Fig. 18. Isometric plots of the amplifier field energy as a func-tion of t and p for two orientations n/2 apart at four locationsalong the propagation direction.

by diffraction from the inner portion. Thus, the effecL of the
Laplacian coupling is small for large 7but becomes progressively
greater at about 7 < 1.

a°
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Fig. 19. Amplifier field energy contour plots for the four propa-
gation regions of interest. Note the temporal advance associated
with coherent exchange of energy between light and matter (the
smaller area propagates more slowly than the larger one), as well
as beam cross-section expansion.

(a)

Fig. 20. Isometric plots of amplifier field energy and transverse
energy flow against retarded time for various transverse coordi-
nates at four propagation regions studied for absorbers. Stretched
radial coordinate was adopted for proper accounting of transverse
boundary condition. When these results are compared with those for
an absorber, it is evident that a focusing phase is not restricted
to the absorber, but develops also for the secondary pulses in am-
plifying media.

6

0
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(a) (b)

Fig. 21. Amplifier field energy contour plots for four propagation
regions of interest with stretched radial coordinates. No severe
reflection or abrupt variation in the field energy, at the wall
boundary, is observed. The enhancement of diffraction by pre-
excited two-level medium is clearly evident.

(1) Shell (only
Gaussian av.)

coupling

Fig. 22 Contrast the time dependence of the energy after inte-
grating over p for the shell model (where eR and TR are both radi-

ally dependent) and the diffraction model (where the Laplaciaa
coupling is rigorously present) for two population inversions: (a)
Gaussian g = g0 exp[-pz], and (b) saturable inversion g = g0 for

P < %; g = go exp[-p] for Pb < p < Pmax"

-- (2) .= 0

f..L~(3) 7 0.69
(a)(b

Fig. 23. Total energy per atom as a function of time with 7 as the
-3

labeling parameter. TR = 0.046 as and L/Lc = 1.95. eR = 3 x 10

for all radii. (a) Superfluorescence of uniform cylinder or small-
area pulse propagation through uniform gain cylinder; (b) Uniform
small-area pulse propagation through Gaussian gain medium.

'e
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Computer results representing the SF of uniform and nonuniform
cylinders (i.e., small-area pulse propagating through a uniform
Gaussian gain cylinder) are respectively displayed in Figure (24a)
and Figure (24b) for different 7 . In Figures (25a) and (25b),
this initial small-area e is now radially dependent. Figures

(26a) and (26b) duplicate the physical situation in Figures (24a)
and (24b), but for a smaller initial polarization. The universal
superfluorescence scaling law is seen not to hold; the calculated
pulse length is much more sensitive to the magnitude of 6R in the
transverse case than it is in the planar case.

The ringing predicted by this two-spatial-dimensional theory
agrees more with experimental observations than that predicted by

" the uniform plane-wave counterpart. Detailed isometric graphs of
the field energy buildup show, in Figures (27a), (27b) and (27c)
qualitative agreement in peak intensity and peak delay with the
ring (shell) model (1c]. Figure (28) illustrates the elimination
of ringing under conditions similar to the low-density Cs data for
different radial density distributions. Figure (29) contrasts the
dependence of the radial gain on a typical 7by various 8R; Figure

(30) illustrates the dependence of the radial gain on a typical R

by different 7. Figure (31) shows the effect of varying tR on

this output intensity. Various small-scale ripples were introduced
in the gain profile (see Fig. 31).

- (1) 7=a
0(2) 7=1.0
(3) 7 0.69

(a) (b)

Fig. 24. (a) Propagation of small-area Gaussian profile pulse
through uniform cylinders (TR = 0.046 as, L/Lc = 1.35 and eR

13 x 10 on-axis). (b) Superfluorescence with Gaussian radial gain
(R = 0.046 as, L/L = 1.35 and eR = 3 x 10-3 on-axis).

R ~ cR

* Ringing is largely removed by a gain medium of 7 = 1, result-
ing in an asymmetric output pulse with a long tail. It now seems
that a larger 8R, see Fig. (33a) (unlikely, according to measure-

ment of feedback Affects and estimates of Raman effects during the
excitation pulse 2 ), or smaller 7 (perhaps 0.4 consistent with the
range 0.35 < 7< 1.39 of ref. 1(a) which used a lI/e rather than a
half width half maximum (HWHM) definition of r , see Fig. (33b),

Ip
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(a ) (b ) - ; '

e (2) 7= 1.0

(3) 7= 0.69

Fig. 25. Same parameters as in Fig. 23 but with a smaller OR =
(a) Small area propagation in a uniformly inverted cylinder. (b)
Small-area propagation in a Gaussian inversion cylinder.

(a)

the field energy versus p and T, for
(a) uniform inversion and pre-exci-
tation; (b) radial e; (c) Gaussian
inversion profile. Notice that
strong ringing would be seen by a
small-aperture detector in the center
of the beam although very little
ringing is in evidence after radial

, averaging.

(c)I,

Il
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Fig. 29. Contrast
of the total en-

ergy per unit
3 atoms (versus time).3 for different in-

=10 (b) 10ifo versions (1) uni-form, (2) Gaus

L u)8=1 3Wfo1r- o dfeen n
2. sian (3) satur-

able Gaussian,
and for particu-
lar tipping angle

" profiles. 
6R=1 0 "

non-uniform 'E
0.46 ns and LL-3 =1. 95. 7 b

,(a) 6 10"  (b) 0 1o..

n I-uniform 3 uifor

Fig. 30. Contrast of the total
energy per unit atom (versus
time) for different radiation
damping time TR for a chosen

7 = 0.7, and a fixed tipping
angle 6R = 3 x 10- . 9R 100,
125, 150, 175.

Fig. 31. Display of small-
ripple effects in the Gaussian
inversion of the cylinder on the
total energy per unit atom (ver-
sus time) for 7= 0.7, 'R
= 0.46 ns, and L/Lc = 1.95.

,oc
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1. 3.1416986E+01 Fig. 32. (a) Emphasizes
2. 3.142535E+01 the effect of large eR
3. 3.1510173E+01 versus small eR on the
4. 3.2358377E+01 the pulse shape asymnetry

and the ratio of the cal-
n + + R  culated pulse length to the

delay of the peak. (b) En-
(a) A (b) hancement of the effect of

small on the pulse shape
asymmetry.
7=, 2.76, 0.7, 0.4.

(a) (b)

(c) (d)

0 10 20 30 40 0 10 20 30 40

Fig. 33. Comparison of experimental and three-dimensional theoret-
ical superfluorescence pulse shape for several densities N in an
atomic beam of 2.0 cm length. The model encompasses rigorous
radial dependence of N, TR and 6R, diffraction (through the Lapla-

cian) and relaxation times. 2= 1, L = 2 cm, T1  70 ns, T2 = 80

n, X = 2.931p, X(0) = 551 nsec, Gaussian and inversion; in the
following columns are the on-axis inversion density n in units of

1011 cm"3 , a of the experiment in the same units and 6 in 10- 4

radians: (a) 3.1, 1.9, 1.07; (b) 3.1, 7.6, 1.37; (c) 1.2, 3.8,
1.69; (d) 0.885, 3.1, 1.96.

p-

4
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Fig. 34. Comparison of planar waves
(curve 1) with three-dimensional cal-
culations (curve 2) of the super-
fluorescence for the Cs experimental

(a) data. Note the lack of agreement
between the two theories with respect
to the ringing while much consistency
occurs between diffraction calcula-
tions and experimental observations.

(b) (c) (d)

L 
(b

is needed to reduce the asymmetry and pulse width. But when re-
laxation terms are also included in the analysis and the densities
are adjusted within quoted experimental uncertainties, a rather
good agreement, (tee Fig. (34)) is obtained between theory and
experiments for a unity 7. These radial effects explain why the
observed ringing in superfluorescence is less than that predicted
by plane-wave simulations (see Fig. 34). Extensions of the present
simulations to two-way propagation and random fluctuation of the
tipping angle are planned. The agreement with experimental obser-

vations should be improved. [Recently, Bonifacio et alld also re-
ported the suppression of the ringing by using coupled-mode mean-
field theory. However, their model does not encompass the propa-
gational effects substantiated by both experimental observation and
rigorous three-dimensional Maxwell-Bloch analysis.]

X. FLUID DESCRIPTION

Consider the polar representation of the field

e A exp (+i$) (13)

-e

Z ----- ~ -- - .
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with A and 0 real amplitude and phase. Also let the nonlinear

polarization of the RHS of equation (1) be written as

pNL = (XR + i xi)e + xNLe, (14)

where XR and X, are real functions of A. Using equation (13), one

gets from equation (1) the transport and the eikonal equations
(n 0  koc/W0 )

4=u2
A2 + VT (AL2 T] --- 1 A,()

VT1 oI A2  (15)

2k 0  + (VT) ] = (16)

The transport equation (15) expresses conservation of beam energy
over the transverse plane. When x, = 0, total power is conserved

along the direction of propagation. The eikonal equation (16)
describes the evolution of the surface of constant phase. It has
the for of the Hamilton-Jacobi equation for the two-dimensional
motion of particles having unit mass and moving under the influence
of a potential49 given by

2 2nV 2k2  ( ) A - XR

if kozz is regarded as time coordinate and koxx, koy as spatial

coordinates. Furthermore, if one adopts A2 and VT* as new depen-
dent variables, the equations of motion become similar to the
continuity and momentum transport equations of ordinary hydrody-
namics2 s' By defining

. k; VT, and (17)

p = A2  (18)

and supposing X, 0, equations (15) and (16) can be written as

ai v /2V r)

S (I VT[p- 1/ 2 (V )] (VTP) (19)
0 0

• + VT " (PY) = 0. (20)

$T
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These equations are the momentum and continuity transport equations

of a fluid with a pressure

p = (v 4p)/fp)). (21)

It should be emphasized that this pressure depends here solely on
the "fluid density" and not on the "velocity". Equation (19) and
(20) can be rearranged into

(pv) + VT.(py) = (V2p)

0

1 Y2

-2 (VTP)(VT.)] + F P(VTP), (22)

where I is the unit tensor.

XI. EQUATIONS OF MOTION FOR OPTICAL BISTABILITY

In the slowly varying envelope approximation, the dimension-

less field-matter equations* are

-i2 + Be a ++ <
-iT e +L + Se- g < P exp(ikz)> (23)

OT 8z

-iFVe -- a = +g <P exp(+ikz)> (24)

with g , g as the nonlinear form of the gain experienced by the

forward (e ) and backward (e-) traveling waves associated with the
pump. The quantities in the R.H.S. undergo rapid spatial varia-
tions; <-..> spatial average of these quantities with a period of
half a wavelength

+ (-iM) + T2 )P = + {W(e + + e')) (25)

a1 + (We-W) - (P+ + P') (e+ +e') (26)

Equivalently,

+ (-i(Mfl)+t2 )P W(e exp(-ikz)+e'exp(+ikz)] (27)

*As an aside, the nonlinear interface bistability effect'-
though potentially important, is not considered.

K . . .. -. ". ' - I~ih l -- a.==. nm lnmnu u -" - i ,mma,' , n ;- -- .-,
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g- + 1,We-w) =(Pe+*exp(ikz) + Pe exp(-ikz)+ c.c.) (28)

with
+ +2p e

'e- =2ipM (29)

P= (p'/2), (30)

E Refe±exp[i(wt ; kz)]} (31)

and

P Re~i p' exp(iwt)} (32)

The complex field amplitude e, the complex polarization density p
and the energy stored per atom W are functions of the transverse
coordinate

p = r/rp, (33)

the longitudinal coordinate

z = aeffzo (34)

and the physical time

-C = t/ P, (35)

In the standing-wave problem, the two waves are integrated simul-
taneously along the physical time, as contrasted to S.I.T. retarded
time.10 Otherwise the physical parameters and variables have the
same meaning.

The presence of opposing waves leads to a quasi-standing wave
pattern in the field intensity over a half-wave length. To effec-
tively deal with this numerical difficulty one decouples the mater-
ial variables using Fourier seriesla8 19 namely,

P1exp(-ikz) I P+ 2  )exp(-i2pkz)+exp(+ikz) I P ( 2 l1 exp(+i2pkZ)
p=0 (2p -1" p=0 "" - °"

(36)

W W 0 p+ [W2p exp(-i2pkz) + c.c.] (37)
p=1

U
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with W0 a real number. Substituting in the traveling equation of

motion, one obtains

a P+ + P+/ = We + + W2e"; (38)x aP1 1 P/2 oe

8 P4 +P3/ A = W2e+ + We-; (39)

3 3, 2e 4. *

+ ... +

a P2 +Ap = Wpe + W2(,+)e' and (40)
'I (2p+l) +  (2p+l)J2 = 2p 2(p+le(

-++

8 P + P/t W eW+e (41)
1 2 0 2

at P3 + P3 2 W2 e +W4e (42)

A e = 0 *47)

W° = , (43)

thr o is a 1nw funtio to e 1noacut h upnk'.T ( P~l z(p+l) 2 O, 2 rp l p(9

w tW2 +W 2 /t luo(esPce+e P3 +e P 1+ e P3 j (45)

a W2  +. W2~t 1 _ F + +e + p4+ + e P* +eP )(6

The field propagation and atomic dynamic equation are sub-
jected to the following initial and boundary conditions:

1. INITIAL:

for t> 0

e=0 (47)

=We ,(48)
Wo 0

-4where We is a known function to take into account the pumping
0

effects. For S.I.T. or soliton collision
+

(P, l 0, for all p (49)

while for the superfluorescence problem

F~
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P (50)
(2p+l)

is defined in terms of an initial tipping angle 6R.

2. LONGITUDINAL

For z=O and z=L: e and e are given in terms of a known
incident function

e 10  (51)

and
e IL (52)

of T and p.

If enclosing mirrors delineating the cavity are used in the
analysis, one must observe the longitudinal boundary equations

e~ 4T1-Ri e1 0+ 4Te at z0 (53)

e 2- e IL + - e +  at z = L (54)

where R1, R2 , (1-RI) and (1-R2) are the respective reflectivity and
transmitting factor associated with each left and right mirror.

3. TRANSVERSE

For all z and T [3e ±/pp=0 and [e ± /ap]p=pmax vanish. The

previously described transverse boundary conditions (Section II)
apply here for each of the fields.

It is noteworthy that the presence of the longitudinal mirrors
will enhance the mutual influence of the two beams. Variations in
polarization and population over wave-length distances are treated
by means of expansions in spatial Fourier series, which are trun-
cated after the third or fifth harmonic. The number of terms
needed is influenced by the relative strength of the two crossing
beams and by the importance of pumping and relaxation processes in
restoring depleted population differences.

XII. CONCEPT OF TWO-WAY CHARACTERISTICS
An easy way to visualize the mutual influence of the two coun-

ter-propagating beams is to imagine their respective information

L carriers in the traveling wave description.

For a light velocity normalized to unity (c/n = 1), by intro-
ducing



EFFECTS OF PROPAGATION AND TRANSVERSE MODE COUPLING 535

. (t-z) and = (t+z) (55)

or equivalently

t = + . and z q- , (56)

one obtains the new derivative as

= and 8 (a- a (57)

Consequently

+ + . a a a (58a)

The field equation reduces to

Oe iiqe' P" Oe = iVe++P+  (58b)
- Te~ ; - TVe4 P

This means that the field is integrated along its directional
characteristic path. With the polarization. having a dynamic func-
tional dependence on the total field the full Bloch equations are
required. Furthermore the two oppositely traveling waves must be
integrated simultaneously.

P±= P-(P ±,P_+ ,e') (59)
1 a

An example of one of the material (Bloch) equations is

ap, k.. + p+ + + -S + " 'k P k S k(P1P-,PklP k+1l".• . e,e ) (60)

By identifying as outlined in Courant and Hilbert [50], the charac-
teristics variable, namely

Vs) and fl= (S) , (61)

or equivalently

0 +S and q=qo-s (62)

1- one obtains
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+and ~ = l(63)

which simplifies the Bloch equations as follows:

: .P k- + YkPk=S (64)

which can be rigorously5 4'55 integrated to give

s+As
Pk(WAS) = Pk(s)exp(-&s/Ys) + . 1exP['(s-s')Y]Sk(s')ds') (65)

Illustrating the method of solution (see Fig. (35), arrows
indicate integration paths for reducing differential equations to
finite difference equations. Paths AB are used for Field Equa-
tions, and while Paths CB are used for Material Equations.

T I Fig. 35. Illustrates the
AT.: two-way characteristic and

* ,the basis of the computa-
PT tional algorithm.

A C A

:. - &Z= COT/n

XIII. THE LAW OF FORBIDDEN SIGNALS

The effect of the physical law of forbidden signals on two-
stream flow discretization problems was applied by Moretti to the
integration of Euler equations 24'4 3.

0 For causality reasons, only directional resolution for spatial
derivatives of each stream (forward and backward field) must be
sought. This is achieved by using one-sided discretization tech-
niques. The spatial derivative of the forward field is discretized
using points lying to the left as all preceding forward waves have
propagated in the same left-right direction; while the backward
field is approximated by points positioned to the right. As a
result, each characteristic (information carrier) is related to its
respective directive history. Thus, violation of the law of for-
bidden signals is prevented.

In any wave propagation problem, the equations describe the
physical fact that any point at a given time is affected by signals
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sent to it by other points at previous times. Such signals travel
along lines known as the "characteristics" of the equations. For
example a point such as A in Figure (36) is affected by signals
emanating from B (forward wave) and from C (backward wave), while
point A' will receive signals launched from A and D. Similar wave
trajectories appear in the present problem, but the slopes of the
lines can change in space and time.

Fig. 36 Displays the role of character-
T A' istics as information carriers.

a~ A

a C D Z

The slopes of the two characteristics carrying necessary
information to define the forward and backward propagating vari-
ables at every point, are of different sign and are numerically
equal to ±c/n. For such a point A, Figure (37), the domain of
dependence is defined by point B and C, the two characteristics
being defined by AC and AB, to a first degree of accuracy. When
discretizing the partial differential equations, point A must be
made dependent on points distributed on a segment which brackets
BC; e.g., on points D, E and F in Figure (38). This condition is
necessary for stability but must be loosely interpreted. Suppose
that one uses a scheme where a point A is made dependent on D, E
and F, indiscriminately (this is what happens in most schemes cur-
rently used, including the MacCormack method). Suppose now, that
the physical domain of dependence of A is the segment BC of Figure
(38). The information carried to A from F is not only unnecessary;

A Fig. 37. Illustrates the

T concept of the law of for-K- "bidden signal for two-stream
D B E C F Z with characteristics of dif-

*e ferent sign.

Fig. 38. Illustrates the
Ao.,,-concept of the causality.-.. T A e

-t __ for two-stream flow with
"-"_characteristics of same
0 8 C £ F Z (identical) sign.

it is also undue. Consequently, the numerical scheme, while not
violating the Courant-Friedrick-Levys4 (CFL) stability rule, would
violate the law of forbidden signals. Physically, it is much
better to use only information from D and E to define A, even if
this implies lowering the nominal degree of accuracy of the scheme.

0
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The sensitivity of results to the numerical domain of depen-
dence as related to the physical domain of dependence explains whv
computations using integration schemes, like MacCormack's 2 , show a
progressive deterioration as the AC line of Figure (38) becomes
parallel to the T-axis (X140), even if X, is still negative. The
information from F actually does not reach A; in a coarse mesh,
such information may be quite different from the actual values
(from C) which affect A. On the other hand, since the CFL rules
must be satisfied and F is the nearest point to C on its right, the
weight of such information should be minimized. Moretti's '-

scheme, relying simultaneously on the two field equations provides
such a possibility. Every spatial derivative of the forward field
is approximated by using points lying on the same side of E as C,
and every derivation of the backward-scattered field is approxi-
mated by using points which lie on the same side of E as B. By
doing so, each characteristic relates with information found on the
same side of A from which the characteristic proceeds also such
information is appropriately weighted with factors dependent on the
characteristic's slopes, so the contribution of points located too
far outside the physical domain of dependence is minimized.

- A one-level scheme which defines

B' (e + e+)/Az (forward wave) (66)UT--  eE  D

-(e e )/&Z (backward wave) (67)'..," =- (eC-F67

is Gordon's scheme [53], accurate to the first order. To obtain a
scheme with second-order accuracy, Moretti considered two levels,
in a manner very similar to MacCormack's. More points, as in Fig.
(39) must be introduced. At the predictor level following Moret-
ti's schemq one defines

S'e = (2e-3eD+e)/&z (forward wave) (68)

=(backward wv)(93 (e-e)/Az bwave) (69)

T 'I MI IA IN IP
OT Fig. 39. Displays

G E Fthe computational
" grid for the X-

** * scheme.

.o
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At the corrector level, one defines

Ae e A-e (forward wave) (70)

and

ae =(-2; + 3; + ;)/AZ (71)
Az N P

It is easy to see that, if any function f is updated as

"= f + ft at (72)

at the predictor level, with the t-derivatives defined as in (23)

and (24) and the z-derivatives defined as in (68) and (69) and as

f(t+At) = (f++ftt) (73)

at the corrector level, with the t-derivatives defined again as in
(23) and (24), and the z-derivatives defined as in (70) and (71),
the value of f at 't+At' is obtained with second order accuracy.
The updating rule (72) and (73) is the same as in the MacCormack
scheme.

At the risk of increasing the domain of dependence, but with
the goal of modularizing the algorithm, three- and four-point
estimators were used for each first and second derivative respec-
tively. Moretti's algorithm was also extended to non-uniform mesh
to handle the longitudinal refractive left and right mirrors: the
same one-sided differencing is used for both predictor and correc-
tor steps. Nevertheless, the wei&hts derived, using the theory of
estimation, (presented by Hamming*3), have improved the order of
accuracy of the spatial derivative estimator at both predictor and
corrector levels. In particular, the derivative estimators are of
second order instead of first order as in Moretti's A-scheme.
Specifically, these weights are derived using a development in
terms as a sum of Lagrangian polynomials at a set of points. As a
result, the overall accuracy of Moretti's predictor/corrector
scheme was increased 6 from second to third order. Either forward
or backward longitudinal derivatives at both predictor and correc-
tor stages are given for the point x1 , x2 and x3 as:

(2x1-x -x x -cX-X
Di - 1 2 3 1 3 1-- ))  (74)

(x 2-x3  2x2-xl-x 3  x 2 "x1
D 2 it (x ~ 71t2(X,) 5,5)(5

I
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D3  x3"x 2  x3-x1 2x3 -xl"x2) (76)SD3 =  nl-' ' 7 3(x3)

3
with n.(x) (x-xi) (77)

ij=l

Here D1 , D2 and D3 represents forward, central and backward differ-

encing estimators for the (first-order longitudinal spatial) deri-
vative.

XIV. TREATMENT OF LONGITUDINAL BOUNDARY

When treating any point within the cavity or at either longi-
tudinal boundary (where a partially reflecting mirror is situated),
there is no problem. For example, at z = 0, e is determined by
equation (53) and not through previous predictor/corrector formulas
(68-71), as only e is calculated at z = 0 in that predictor/cor-
rector manner (68-71). However, for a point one increment (6=Az)
from the left mirror, one encounters difficulties calculating the
forward wave. The second needed point, which is vital to the
formulas, would fall outside the cavity. An identical difficulty
arises from the counterpart backward wave with respect to the right
hand mirror. The field traveling from the right is defined at z =
L by equation (54).

To deal with this situation one has to modify the predictor/

corrector schemes so the increment "862" is used instead of 6. The
loss of that second point reduces the accuracy of the derivative
estimator. To maintain the same order of accuracy near the mirror,
one must compensate for this loss by reducing the mesh size.

XV. NUMERICAL PROCEDURE FOR SHORT OPTICAL CAVITY

An alternate procedure to carry out the computation is to
integrate the field along the longitudinal propagational distance.
This approach is particularly attractive for a short cavity. It
was developed with the help of McCalls7 as an attempt to relax the

tVs restrictive relation between the temporal t and spatial meshes z
and r. It is presently being implemented and will be outlined
here.

The reflecting effect of the partially refracting mirror can
be built into the determining equations. Forward and backward
field and polarization terms will appear explicitly as driving
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sources ineach traveling field equation (see Fig. 40). One can
readi ly contrast the two physical situations of long and short
cavity. To illustrate the methodology the diffraction is neglec-
ted. For no reflection, the fields are described by

e+(+A~z e(t,z-c,&t) + fdz' P+(t+A&t -!Lz) (78)
z-cAtC

which applies if z > cAt. Also

z+cAt-
e (t+at,z) =e-(t,z+c~t) + .f dz' P (t+At + ,z' (79)

z
applies if L-z > cAt. For one reflection, the fields are obtained by

e (t+at,z) 4eI0 (t+At - z/c) + f dz'I P+(t + At - ,z)

cAt-z
+ 4e (t,cAt-z) + 4T f dz' P-(t+A&t- !±+,z') (0

whenever z < cAt, and if L-z < cAt, then one reflection

e (t+,&t,z) e 4TI(t+At - L-1) + 4T e'A e+(t,2L-z-cAt)

+L dz' P-(t+At + ZZ

zz

+ 4F e' f dz' P+(t+&t - z' ) (81)
2L-z-cAtc

In all of the above it is assumed that cAt <L (so that two re-
flections cannot occur in time At). To correctly include the
influence of diffraction, appropriate weighting coefficients must
be used as summarized below:

(1) For no reflection-correct by q V2(e+cAt), 7 2(e-cAt)

(2) For one reflection-

(a) Term 4T e1 only propagates z (cat > z) so correct only by

Z 2

IT
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z1
(b) Term f dz' P+ goes a distance of an average of (-j)z; correct

0
by i 7.2

2T

(c) Term e&(tcAt-z) goes a distance of cAt; full correction by
cAt-z

cAt-z cAt-z
(d) Term 41 f dz' P_ goes - + z; correct bya distance of

0 c

2 T

(e) Term 4Tgoes IL goes a distance of L-n); correct by

C1/2)(L-z)V2
T

(f) Term eti z egoes full distance; correct CA V

L L-z
(g) Term f dz' P goes a distance of correct by

1 L-Z) V2

2 T

cp L g -z)+cat
(h) Term r o e l P goes a distance of 2on the

2L-z-cAt2

average; correct L-z+cAt ,2
2 T

and similarly for any time correction.

Instead of the usual predictor/corrector weighting of 1/2 for
each of predicted and corrected values, a more complicated proce-
dure must be used.

XVI. TWO-LASER THREE-LEVEL ATOM

An extension of the SF calculations presented in Section IX
should include such pump dynamics and its depletion on a three-
level system similar to the model suggested by the Bowden et als9 .
The simulation of the dynamic interactions of two intense, ultra-
short laser pulses propagating simultaneously through a gas of
three-energy level atoms was considered"0 . The rigorous diffrac-

4::
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tion and cross-modulation interplay of the two laser beams with the
inertial response of the doubly resonant medium is studied using an
extension of the numerical algorithm developed for SIT analysis.
It is expected that by altering the pump characteristics, one
encodes information in the pulse that evolves in the nonlinear
media resulting in a light by light control. An intermediate study
will be Double Coherent Transients61 '62  Another benefit of this
study would be an analysis of Wall's63 scheme for optical bistabil-
ity in a cohere.tly-driven three-level atomic system. However,
some material equation modifications must be made as the novel
mechanism relies on the nonlinear absorption resonances associated
with a population trapping, coherent superposition of the ground
sublevel. When one defines dimensionless variables in a parallel
manner to SIT, the physical problems are described by the following
equations: Ipa and [pb are the pulse tp of laser a and laser b

respectively. Q is the quadrupole slowly varying envelope.

.TiFVea,b + % a 8a,b Pa,b (82)

with

,a,b = (Pa/b) (T pa/Tpb)1/2 (83)

• i
8 ka = ea Wa-i(Ma)Pa - Pal 2a + eb Q (84)

8 Pb = eb Wb i(&M) Pb" b/;2b 2 e a Q (85)

T= " + 2 (Ca Pb'eb Pa)  Q/t2 b (86)

W (e P ePa )  (WaWa)/l+ (eb Pb + eb Pb (87)
Sa- 2 a a a a a

8TW b=  b Pb eb Pb) " bbl + Pa + a ) (88)

If one uses the identity

Wa + Wb =Wab (89)

: a further equation (not absolutely necessary) is introduced:

Wab = + 14[ePbe8!Wb + 4b(ePeP)+ - (wab-;ab)/ab (90)

when We and We are the equilibrium values of W and W
a,b ab a,b ab'

subjected for infinite relaxation times to a conservation of proba-
bility
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a 11 al + 1P Ib + 1Q12 + + +Wd eo (91)

Equivalently:

2 2 2 +2''W + W2
lP al2 +IP I + 1Q1 '.23a b ab)

I 2 1 2 1 2+ Nil 2/3(Wi.W2  ) (92)
1P . 'bI'+a,i b,i ab i

Figure (40) illustrates Wap W and Wab as a function of time

for a particular radius in the reshaping region.

Mr.

to-. is-a 2A4
1 .

I

o" 1 .5 •A
.S

N'. "

"
1 "s o S IS 15 aS

Fig. 40. Contrast of the material energy for a double self-induced

transparency calculation.

Numerical Refinements

If the two laser beams which propagate concomitantly are se-
verely disparate from each other, the normal stretching techique
must be generalized into a double stretching transformations °  to
ensure that the nonuniform temporal grids simultaneously match the
two different pulses. No spatial rezoning is as yet designed.

Prescribed Double Stretching

SDue to the essential nonlinear nature of the cooperative
effects associated with a coherent light-matter interaction, dif-

Vf
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ferent speeds are associated with pulses of different strengths.
So particular attention must be given to deal effectively with two
concomitant longitudinal speeds (one for each laser). Mathemati-
cally this is

T = a! + b sin wst

KT a + b ws cosw sT

and is shown in Fig. 41. Evenly spaced grid points in T are clear-
ly related to non-uniform variable grid points in the physical time
T.

T Fig. 41. Displays the pre-
scribed double
stretching.

-Tl

w 0 n/2 n 3/2 2n

cos w I 1 0 -1 0 1

aT/au a + bw a a - bw a a + bwI

For wsT = n, aT/aT is minimum.

Several noteworthy facts must not be overlooked, i.e., (i) w s
is related to the frequency of oscillations; and (ii) the steepness
of the slopes must depend on the concentration points.

The various stretching parameters are given by

4-
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aOT + O
a = 1/2 [UImax FTmin

b = [1/2ws a - 1Tit s 0imax BT mini

Ws (c2 - Tcl) = 2i => w s Td  27

If Ed increases, ws decreases - a smaller frequency yields to a

larger b, if td decreases, w5 increases - a larger frequency yields
to a smaller b parameter.

To ensure monotonicity of the function T in T (so that multi-
valued possibilities are excluded), an important condition which
must never be violated (see Fig. 42), is

ST=9 Gli ( a -bw) > 0"

Fig. 42. Displays the li-
940 mitations on the parameter

T q" choice to the double stretch-
ing transformation.

r*

Adaptive Double Stretching

Following the spirit of adjusted stretching for a single
pulse, described in Section V, the sampling frequency w can vary
along the direction of propagation n. s

Prescribed Triple Stretching

For a correct treatment of the pulses propagating concomi-
tantly while one of the two lasers may have broken up into two
small pulses, successive double stretchings are applied

Step I A x2 + Bx

I
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from xx 2 , = Ax + Bx

2' t = 2 2Bx3
; x = x 3 ,  t = 2 t , = A 3 +°

and x = 0, t 0.

C1 = C 2 - C - 1

•(X 32x2) o (2x2 -x2

one gets, A = 3 2 and B o 2 3x3x2 (x2"x3) x2x3 (x2"x3)

Step 2 Y a t + b sin wC

Cumulative step Y = a(Ax2 + Bx) + b sin ws (Ax
2 + Bx)

Y a(2x A 4 B) + bws (2Ax + B) cos (Ax2 + B)

= (2Ax + B) (a + bws cos (Ax2 + B))

The coefficients axe readily found (see Fig. 43).

"," bFig. 43. Illustrates a pre-

Tscribed triple stretching.

XVII. CONCLUDING REMARKS

Most of the features of the numerical model used to study
temporal and transverse reshaping effects of single and multiple
short optical pulses propagating concomitantly in active, non-
linear, resonant media have been presented. The calculations
strive to achieve a rigorous analysis of this nonlinear interaction
with maximum accuracy and minimum computational effort. The appli-
cabiLity of computational methods developed in gas and fluid dy-

. namics to the detailed evolution of optical beams in nonlinear
*" media have been demonstrated.

By introducing adaptive stretching and rezoning transforma-
tions wherever possible, the calculations improved considerably.
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In particular, self-adjusted rezoning and stretching techniques
consisting of repeated applications of the same basic formulae were
reviewed as a convenient device for generating computational grids
for complex nonlinear interactions. The techniques are well-suited
for each programming because the mapping functions and all related
derivatives are defined analytically as much as possible. Enhance-
ment of speed and accuracy was realized by improving the integra-
tion technique/algorithm which was general and simple in its appli-
cation compared with its analogue, the two-dimensional Lagrangian
approach4 2.

This method was applied to a number of SIT situations with and
without homogeneity in the resonant properties of the atomic medi-
um. Note that the theoretical predictions defined with the single
stream SIT code, when applied to absorbing media, were quantita-
tively found84 by independent exerimental observations"5 , and
recent independent perturbational 6 and computational analysis67 .
The design of the first of these experiments dealing with sodium
vapor, was based on qualitative ideas, quantitative analysis and
numerical results obtained with the code described in this paper.
More recently, King et al also reported" the experimental observa-
tion in iodine atomic vapor of the coherent on-resonance self-
focusing. This is a novel manifestation of the phenomenon as it
deals with a magnetic dipole instead of an electric dipole moment.

Also, the severe beam distortion and on-axis pulse break-up,
when the problem of transverse boundary is rigorously addressed,
was observed in high power lasers used in Laser Fusion experiments.

With the help of Gibbs and McCall, we have resolved the major
discrepancies between planar calculations (as done by Hopf et al"9 )
and the Cs experimental observations. The main sources of these
discrepanciess  were the occurrence of transverse effects in the
experiments and the uncertainty in the tipping angle values.

Optical bistability shares with the previous SIT and SF the
same basic physical features; however, the initial and boundary
conditions are different and complicate the problem. Nevertheless,
the similarities predominate; therefore, a unified numerical des-
cription with some modifications can apply to all these problems.
This new computational approach, based on the concept of absolute
consistency of the numerics with the physics, should be successful.

ADDENDUM

An alternate solution to eliminate rapid oscillations from the
two-mode Bloch equation without recourse to harmonic expansion
could be to adopt Moore and Scully 71 multiple-scaling perturbation
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expansion. They have applied the techniques of multiple-scaling
perturbation theory, described in hydrodynamics textbooks, to the
free-electron laser problem and the pico-second transient pheno-
mena.
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Abstract

Calculational results and analysis are presented and discussed for the effects of coherent pump dy-
namics, propagation, transverse and diffraction effects on superfluorescent (SF) emission from an optically-
pumped three-level system. The full, co-propagational aspects of the injected pump pulse together with the
SF which evolves are explicity treated in the calculation. It is shown that the effect of increasing the
injection signal area exhibits a similar effect on the evolved SF delay time as either increasing the gain,

or F l
, (F is the Fresnel number per effective gain). All else being equal, it is demonstrated that altera-

tion of the temporal as well as radial shape of the injected pump pulse has a profound effect upon the shape
of SF as well as the sharpness of the rise of the pulse, its delay time, peak intensity and temporal width.
For conditions of sufficiently large gain and large injection pulse area, SF which evolves and the propa-
gating pump pulse eventually occur in the same time frame (overlap). It is shown that under these condi-

* tions the SF can be significantly temporally narrower than the pump and of significantly larger peak inten-
sity. Thus, by choosing the shape of the injected pump envelope and/or its area, the SF shape, delay time,
peak intensity and temporal duration can be altered. Thus, deterministic control of the characteristics of
the evolving SF pulse is demonstrated by selecting appropriate characteristics of the injected pulse signal
at a different frequency.

Introduction

Superfluorescence[l] (SF), is the dynamical radiation process which evolves from a collection of atoms
or molecules prepared initially in the fully inverted state, and which subsequently undergoes collective,
spontaneous relaxation[21. Since Dicke's early work[21, much theoretical and experimental effort has been
devoted to this subject[3].

With the exception of the more'recent work of Bowden and Sung[4, all theoretical treatments have dealt
exclusively with the relaxation process from a prepared state of complete inversion in a two-level manifold
of atomic energy levels, and thus do not consider the dynamical effects of the pumping process. Yet, all
reported experimental work[5-10] has utilized optical pumping on a minimum manifold of three atomic or
molecular energy levels by laser pulse injection into the nonlinear medium, which subsequently superfluo-
resces.

It was pointed out by Bowden ana Sung[4] that for a system otherwise satisfying the conditions for
superfluorescent emission, unless the characteristic superradiance time[l], TR' is much greater than the

pump pulse temporal duration, Tp, i.e., TR > > Ip, the process of coherent optical pumping on a three-level

system can have dramatic effects on the SF. This is a condition which has not been realized over the full
range of reported data. Also, Bowden and Sung's analysis was restricted to the uniform plane wave regime;
it cannot account for the inevitable spatial and temporal beam energy redistribution (as in physical

4 system). Transverse fluency is associated with radial density variations and diffraction coupling, it leads
to comunication among the various parts of the beam.

In this paper, we present calculational results and analysis for the effects of coherent pumpdynamics,
propagation, transverse and diffraction effects on SF emission from an optically-pumped three-level system.
The full, nonlinear, co-propagational aspects of the injected pump pulse, together with the SF which evolves
are explicitly treated in the calculation. Not only do our results relate strongly to previous calculations
and experimental results in SF, but we introduce and demonstrate a new concept in nonlinear light-matter

* Jointly supported by the US Army Research Office DAAG29-79-C-0148, the Office of Naval Research

NOOO-14-80-C-0174, and Battelle Colombus
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interactions, which we call light control by light. We show how characteristics of the SF can be controlled
by specifying certain characteristics of the injection pulse.

Equations of motion

The model upon which the calculation is based is comprised of a collection of identical three-level
atoms, each having the energy level scheme shown in Figure i. The I *-' 3 transition is induced by a coher-
ent electromagnetic field injection pulse of frequency w nearly tuned to the indicated transition. The

0
properties of this pumping pulse are specified initially in terms of the initial and boundary conditions.
The transition 3 - 2 evolves by spontaneous emission at frequency w0 . It is assumed that the energy level

spacing is such that &3 > 2 > > & so that the fields at frequencies w° and w can be treated by separate
wave equations. The energy levels 2 *-' 1 are not coupled radiatively due to parity considerations, and
spontaneous relaxation from 3 - 2 is simulated by the choice of a small, but nonzero initial transverse

-4polarization characterized by the parameter *- 10 . Our results do not depend upon nominal deviations of
this parameter. The initial condition is chosen consistent with the particular choice of 0o, with nearly

all the population in the ground state, and the initial values of the other atomic variables
chosen consistently[4,11].

We use the electric dipole and rotating wave approximations and couple the atomic dipole moments to
clasical field amplitudes which are determined from Maxwell's equations. The Hamiltonian which describes
the field-matter interaction for this system[4] comprising N atoms, is,

3 N N (iwt - k-r. iwt (--r.)=(i i -[j 3 (j), R(j) iw -J Y (j) N ~ j

r1l jal rj rr 2jl 32 23 - - 2 R 31rj1j=l -3

-i(w0t - k o r) *(j) i(wot - ok .j)X e - ~ j 0 ]0 ()' 13

The first term on the right-hand side of Eq. (1) is the free atomic system Hamiltonian, with atomic
level spacings erj, r = 1,2,3; j=1,2,...,N. The second term on the right-hand side describes the interac-

tion of the atomic system with the fluorescence field associated with the 3 '-' 2 transition, whereas the
last term on the right in (1) described the interaction between the atomic system and the coherent pumping

field. The fluorescence field and the pumping field have amplitudes 0 and S , respectively, in terms
of Rabi frequency, at the position of the jth atom, r.. The respective wave vectors of the two fields are k-Jand k and the carrier frequencies are w and Wo" It is assumed that the electromagnetic field amplitudes

vary insignificantly over the atomic dimensions and that all of the atoms remain fixed during the time frame
of the dynamical evolution of the system.

The atomic variables in (1) are the canonical operators [4] R( ) which obey the Lie algebra defined by
the commutation rules [12-141

[R ) = R(m) .- R(m) 8 8 (2)ij' k ik Rj mn Aj ikgmn

A i,j, = 1,2,3; m,n = 1,2.... N. The Rabi rates, 0(j ) and (J) are given in terms of the electric field
(i) ) (j)amplitudes E and E(0 respectively, and the matrix elements of the transition dipole moments, p32 and

P (J) by
31 (J)  (J)
o(j E IJ32

= ,(3a)

Ee (j) P (j)
(j) 0 31N !- E-- (3b)

where we have considered only one linear polarizction for the two fields and propagation in the positive z
direction.

It is convenient to canonically transform (1) to remove the rapid time variations at the carrier fre-
quencies w and w and the rapid spacial variations in the wave vectors k and k . We assume that the field

envelopes 0 and wR vary much more slowly than the periods w"  and w°  , respectively. In the trans-
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formed representation, we are thus dealing with slowly varying field amplitudes and atomic operators. The

desired transformation U is unitary and is described in ref. 12.

HTr = U H U1

The equations of motion for the atomic variables are calculated from the transformed Hamiltonian ac-
cording to

X j)= (RT, RO I5

This set of equations constitutes the equation of motion for the density operator to for the system in the
slow-varying operator representation. By imposing the canonical unitary transformation, we, in fact, trans-
formed to a slow-varying operator representation which is consistent with the slowly-varying enveloped
approximation to be imposed later on in the Maxwell's equations coupled to the hierarchy of nonlinear,
first-order equations, (5).

The following hierarchy of coupled nonlinear equations of motion is obtained for the atomic variables:

A Mj = (0 0 > R O ) + 0*0c ) . O ), 0,t~ ) R Qj) + ( 4) R(O > I ,°Y 1 (j) R_ (e) I (6a )
33 2 32 23 213 + K 31R 3 33 - 33

k =j) = I o(j) RO ) + f1J) R J) - R(j  R() I (6b)
22 "32 23 " 22 " 22

"(j) jm i (j) + I )*(j) (RO) - 2) + , *(j) R(j) R(j) (6d)
32 32 2 22 33 2 2 12 32

i(j) it(j) R - [*(j) R + (j) R j) (6e)12 N12  2 R32] - l 12 (

( j ) =iA(J) R ( j ) + 1 O(j 1 2  1 (j) (RO - R( ) ] " Y R ) " (6f)

In Eqs. (6), we have added phenomenological relaxation y11 and dephasing y and taken these to be uniform,

i.e., the same parameters for each transition. For the diagonal terms, Rbk , the equilibrium values are

designated as Re
) , the same for all atoms.

Since the equations (6) are linear in the atomic variables Rk , they are isomorphic to the set of

equations of motion for the matrix elements of the density operator 4. We shall treat the Eqs. (6) from
this point as c-number equations. Further, we assume that all the atoms have identical energy level struc-
ture and also, we drop the atomic labels j, so it is taken implicitly that the atomic and field variables
depend upon the special coordinates as well as the time.

It is convenient to introduce a new set of variables in terms of the old ones. We let

Wki = Rkk - R , k > J , (7a)

R = 1 (U + i V k > 0 , (7b)

where UkgZ Vk., and Wk are real variables, and Uki = Utk, Vk =Vk,

= X + iY , (7c)

wR = Xo + iYo  , (7d)

where X, Y, X0 and Y are real variables.

The resulting equations of motion for the real variables (Wk, Uki, Vk21 are

(K UYV 3 I } IXoU31 - " y 1 [W3 1 -W ( ) ] 
, (8a)

W31 2 32" 32} o 31 o3131 1

(e I 8b
= XU 32 -YV 3 2 } + 1 {XoU31 - YoV3 1) - yll[W 3 2-W 32 (b)

U3 2 ="V 32 - XW3 2 + 2 U2 l - YoV 2 11 - YI U3 2 , (Sc)
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V32  32 +Y1 3 2  2 o21 + oU2 1] " 1 V32  ,(d)

AV + ! InU + YV I - X W (8e)
31 31 2 21 21 o 3 1 1 U 3 1

A + X YUI+YW Y1V(8f)

31 31 + 21 - 21 + 31- Y1V3 1  )

6 V 21 [X31 - YV YXU3  -y 3  -YIU 21  ,(8g)
21 21 31 31 2 XoU32 oV32

V21  "6U2 1 - 2 YU 32 YOU32 ] - YI V21 (8h)

In obtaining Eqs. (8), we have made use of the invarient, tr = I,

I =-R ( ) + ( ) + R(J) (9)

11 22 33

It is noted that i = 0 is satisfied identically in (6a)-(6c) for yll 0. For y1 0, the condition (9)

together with (6a)-(6c) constitutes the statement of conservation of atomic density, i.e., particle number.

The Eqs. (8) are coupled to Maxwell's equations through the polarizations associated with each transi-
tion field. It is easily determined that the Maxwell's equations in dimensionless form in the slowly-
varying envelope approximation and in the retarded time frame can be written in the following form

1 7 2 X 0 + d U3 , (10a)

P o P Y p o 31

1 2 -x +a
V s  1VP V { d U32 1  (10b)

Sv32

In the above equations, we have assumed cylindrical symmetry, thus the transverse Laplacian which accounts
for diffraction coupling is:

p2 (P a (11)

The first term on the left-hand side in (lOa,b) accounts for transverse communication effects across
the beam with normalized radial coordinate p = r/r where r is the radial distance and r is a character-

p p
istic spatial width. In (10), nPsr z ae;! where ae f is the on-axis effective gain,

W P3

32w H3 N
-. o-31 {p ) (12)

eff =  nA c

p5

where { p are characteristic times for the system, N is the atomic number density (assumed longitudinally
a

homogeneous) and n is the index of refraction (assumed identical for each transition wavelength). The
quantity

d = N(r) (13)
'00

governs the relative radial population density distribution for active atoms and is taken as either Gaussian
S-with full width r or uniform, in which case r corresponds to pmax 1. The Gaussian distribution would be

p pma
associated with an atomic or molecular beam with propagation along the beam axis. For the cases treated
here, it was found that there is no significant difference in the results for a uniform density distribution
with injection pulse of initial radial width at half maximum, r0 , and a Gaussian radial density variation

with r = r p, For the latter case, the effective gain geff is appropriately adjusted such that both the

radially integrated gain and the total effective gain, geffL, remain invariant between the two cases, where

L is the length of the medium in the direction of propagation. In obtaining (10-13), we have extended
Nattar et. al (14) Theoretical analysis for two-level SF. Equations (10) are written in the retarded time,
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t, frame where x = t-nz/c. From this point on, in Eqs. (8) is taken to be 3/31. Finally, the first

factors on the first terms in (10) are the reciprocals of the "gain length" Fresnel numbers defined by

nr
2

VF - - (14)
P gf5 X I

where

eff
ps

geff !5 (15)
p

s(

It is seen from (10) that for sufficiently large Fresnel number, F, the corrections due to transverse ef-

fects become negligible. Note that F corresponds to a gain to less ratio. The "gain length" Fresnel num-

bers F are related to the usual Fresnel numbers 7= 7/tr L, where L is the length of the medium by
p

F/7 .eff L (16)

i.e., the total gains of the medium. In the computation, diffraction is also explicity taken into account
by the boundary condition that p = pmax corresponds to completely absorbing walls.

The initial conditions are chosen to establish a small, but nonzero transverse polarization for the
3 - 2 transition with almost the entire population in the ground state. This requires the specification of

-4 -4
two small parameters, C - 10 , for the ground state initial population deficit, and 6 - 10 for the tip-
ping single for the initial transverse polarization for the 3 - 2 transition. The deriva' on for the
initial values for the various matrix elements is presented elsewhere [12], and the results are as follows:

W31 =2 e (17a)

W32 = (17b)

U32 =0 (17c)

V3 2 =E6 (17d)

U3 1  m sin op (17e)

V3 1  mcos* p (17f)

U2 1  - 2 V31 (17g)

V = 2 U31 (17h)

-1
where m = cos (2e-1) and the phase p is arbitrary, and we have chosen the phase 0s to be zero.

Numerical Results

Calculational methods applied to this model and discussed elswehere[13,15] were used to compute the
effects on SF pulse evolution for various conditions for the injection signal, thus demonstrating control of
the SF signal by control of the input signal. Some examples follow.

In Figure 2 is shown the transverse integrated SF pulse intensity vs. retarded time I (curve 2) to-
gether with the transverse integrated pump pulse intensity vs. T (curve 1) for a gain and propagation depth
chosen so that the pulses temporally overlap. Under these conditions the two pulses strongly interact with
each other via the nonlinear medium, and the two-photon process (resonant coherent Raman - RCR) which trans-
fers population directly between levels 2 and 1, makes strong contributions to the mutual pulse develop-
ment[4]. The importance of the RCR in SF dynamical evolution in an optically-pumped three-level system was
pointed out for the first time in reference 4. Indeed, in the extreme case, the SF pulse evolution demon-
strated here has greater nonlinearity than SF in a two-level system which has been prepared initially by an
impulse excitation. What is remarkable is that this is an example where the SF pulse temporal width t is

much less than the pump width p, i.e., the SF process gets started late terminates early with respect to

the pop time duration. Pulses of this type have been observed[16] in CO2 -pumped CH 3F.

Figure 3 is a comparison of the radially integrated SF pulses at equal propagation depth for three
different values for the input pulse radial shape parameter v, where the initial condition for the pump

transition field amplitude Xo(P) is Xo(p) = Ko(0) exp [-(r/r )V]. Since all other parameters are identical
0 p
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for the three curves, this shows that the peak intensity increases with increasing v whereas the temporal
width and delay time decreases. Also, it is clear that the SF pulse shape varies with v. In connection
with each of the SF curves shown, there is less than ten percent overlap with the injected pulse. These
results thus demonstrate the control of the SF shape, delay time, peak intensity and temporal width by
control of the injection pulse radial shape. In Figure 4, we contrast for different V (as in Fig. 3) iso-
metric of the pump and superfluoresance outputs to display the importance of spatial profile (v=1,2,3:
exponential, Gaussian and hyper-Gaussian).

The effect on the SF pulse of variation of the input pulse temporal shape parameter a, is shown in
Figure 5 which compares SF pulses at the same penetration depth as given in Figure 3, for two different

values of .. Here X(P) = X(0) exp [-( T )Y]. It is seen that the variation from a Gaussian, u = 2, to a
P

super-Gaussian, a = 4, temporal input pump pulse shape causes almost a factor of two increase in the peak SF
intensity with a significant reduction in temporal width and no discernible shift in the time delay. This
situation is in marked contrast with that shown in Figure 3 for the effect of pump radial shape variation.
As in the previous case, there is less than ten percent overlap between the SF pulses and the pump pulse.

Figure 6 shows the SF pulses at equal penetration for various values for the initial temporal width T
of the injected Gaussian n-pulses. All other parameters for the pulse propagation are equal. Again, therep

is less than ten percent overlap between the SF pulses shown and the pump pulse. Thus, reducing the initialtemporal width of the injection pulse causes a shift of the SF delay time and temporal width to higher
values, and a decrease in the SF peak intensity.

Figures 7 and 8 illustrates the Fresnel dependence of the SF buildings. Figure 7 represents the radi-
ally integrated output SF energy while Figure 8 displays isometrically, versus T and p, the SF energy. As
the initial spatial width of the injected Gaussian pump increases rp, the associated Fresnel number de-

creases, the delay strengthens, the SF peak intensity reduces and the SF pulse gets more symmetrical.

The effect on the SF pulse of the on-axis area of the Gaussian pump pulse is shown in Figure 9 for the
same penetration depth as for Figure 3. It is seen here that the effect of increasing the initial on-axis
area of the pump pulse is to decrease the SF pulse temporal width and delay time and to increase the inten-
sity. As before, the overlap in this case between the SF and pump pulses is less than ten percent.

Figure 10 illustrates the dependence of SF output on the shape (form) of the input pump pulse whether
it is full Gaussian pump, half-front Gaussian or reflected-half Gaussian. The shorter delay and the
stronger SF output are associated with the full Gaussian followed by the reflected-half Gaussian pump and
the (rising) front half Gaussian pump respectively.

In Fig. 11, the effect of varying N, the atomic density, on the SF build-up is shown. Note that N
enters in the definition of aeff then in Fp . The more dense N becomes, (the larger is the effective gain),

Psp
the more intense is the SF build-up and the shor'er becomes the relative delay. Thus, the overlap between
the SF and the pump pulses increases with N. furthermore, the nonlinear contribution of the two-photon
effects increases significantly.

Conclusion

We have shown here eight ways of shaping the SF pulse by controlling corresponding properties of the. " injection pulse in coherent optical pumping on a three-level system, where propagation, transverse effects

and diffraction are precisely taken into account. We have demonstrated also, in Figure 1, the highly aon-
linear effect of generation of an SF pulse of much narrower temporal width and larger peak Rabi rate than
the pump pulse under conditions where the two pulses completely temporally overlap after suitable propaga-
tion and pulse reshaping. An additional significant nonlinear to the SF emission in this case is due to the
competing two-photon process with the direct process[4]. We have thus demonstrated by numerical simulation,
the nonlinear control of light at one frequency with light of another frequency.

By changing the material characteristics such is the dipole moment of species or& the associated transi-
tion frequency, one finds that the SF pump dynamics are modified [12]. The effect of increasing them is

*similar to the effects associated with augmenting N.
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FIGURE CAPTIONS

Figure 1. Model three-level atomic system and electromagnetic field tunings under consideration. For
the results reported here, the injected pulse is tuned to the I - 3 transition.

Figure 2. Radially integrated intensity profiles for the SF and injected pulse at Z = 5.3 cm penetra-
tion depth. The injected pulse is initially Gaussian in r and T with widths r = 0.24 cm and

0
4 nsec, respectively, and initial on-axis area 0 =n. Further, ( 3 1 )/(e3 - 2 ) = 126.6;

gP = 17 cm- g = 641.7 cm1 ; Fp = 8400; F = 2505; T1 = 80 nsec; T2 = 70 nsec, where T1 and

T are taken to be the same for each transition.
2

- Figure 3. Radially integrated intensity profiles of SF pulses at a propagation depth Z = 5.3 cm for
three different values for the input radial shape parameter v. The injected pulse is ini-
tially Gaussian in T, and has radial and temporal widths as for Figure 2 with initial on-axis

area 0 = 2n. In this, case, gp = 14.2 cm; gs = 758.3 cm' ; Fs = 2960; F 7017, with all

other parameters the same as for Figure 2. Here, curve 1, V 2; curve 2, v = 3; curve 3,
v = 4, (see text).

Figure 4. Isometric SF intensity (t versus p) at a propagation depth Z 5.3 cm for three different
values for use input radial shape parameter v. This figure complements Figure 3.

Figure 5. Radially integrated intensity profiles of SF pulses at a propagation dept Z = 5.3 cm for two
different values for the input pulse temporal shape parameter a. The injected pulse is
initially Gaussian in r, and has radial and temporal widths as for Figure 2 with initial

on-axis area 0 = 31. In this case, gs = 641.7 cm ; Fs  255 and all other parameters are

the same as for Figure 3. Here curve 1, a = 2; curve 2, a = 4 (see text).

Figure 6. Radially integrated intensity profiles of SF pulses for five different values for the tempo-
ral width, T of the injected signal: curve 1, tp 4 sec; curve 2, T 3.3 nsec; curve 3,

x = 2.9 nsec; curve 4, T = 2.5 nsec; curve 5, t = 2.2 nsec.
ppp

Figure 7. Radially integrated intensity profile of SF pulses at a propagation depth Z = 5.3 cm for five
different values of the spatial width r of the injected pump (thus of the associated Fresnel

p
number): curve 1, = 0.69; curve 2, 7= 0.40;curve 3, 0.24; curve 4, 0.17 and
curve 5, 5= 0.10.
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Figure 8. Contrast of SF (top line) and Pump (botton line) Energy isometric versus r and p at a propa-
* gation depth Z = 5.3 cm for different values of the Pump Fresnel number (associated with the
" initial spatial width of the injected signal): curve 1, 7 = 4.0; cueve 2, = 2.26;

curve 3, 7 = .0; curve 4, 7= 0.69; curve 5, ,T= 0.40; curve 6, 7= 0.27 and curve 7,
7= 0.10.

Figure 9. Radially integrated intensity profiles of SF pulses for three different values for the in;-
tial on-axis injection pulse area 0p; curve 1, Op = n; curve 2, Op = 2n; curve 3, 8 = 3n

All other parameters are the same as for Figure 2, except for gs = 291.7 cm and
F 1138.7.

Figure 10. Radially integrated intensity profile of SF pulses for three different form of the injected
pump: curve 1, front half Gaussian form; curve 2, full Gaussian and curve 3, reflected half
Gaussian.

Figure 11. Radially integrated intensity profile of SF pulses for three different atomic density N.
From curve a to curve d, the density ratios are: b/a - 1.4, c/a = 1.8, d/a - 2.2.
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ABSTRACT

This document presents the system developed to support the numerical laser
modeling project at the Universite de Montreal in conjunction with: the Polytechnic
Institute of New York. This tool represents a mechanism for practical parametric
simulation studies of real-life experiments in quantum Electronics. The goal of
this system is to offer a reliable, adaptable and easy tool to the production and
study of laser simulations, a study mainly done through drawings and comparisons
of functions. Organized around SIMRES and DATSIM type files, this system en-
compasses software packages which control file access, application programs and
the very laser programs. The SIMES files are self-descriptive and can store
in the same direct access file all the information relative to a simulation.
The SLMRES package is used to generate a SIMRES file while the XTRACT package
permits the reading of the information stored on a SIMRES file. The DATSLM files
regroup on one file, permanently located on disk, a summary of the SIMRES files
(because of their size these must be filed away on a magnetic type). The DATSIM
package permits the reading and the writing procedures of the DATSIM files. This
document also presents three of the principal application programs: the DEFPARM
program which helps the user to construct parameter games for the simulation pro-
grams, the DESRES program which plots the simulation results, and the SYNTH
program which makes the comparisons. Finally, the document presents the different
laser programs.

* Jointly supported by F.P.Mattar, the U.S. Army Research Office, the U.S. Office
of Naval Research, the U.S. Science Foundation Research Corporation, Battelle
Colombus Lab. and the Canadian Defense Research Establishment at Valcartier.
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i - TVnODUCTION

*" The laser numerical modeling project began over three years ago at the University of
Montreal. A first production system, which nermitted generation of laser simulations and
graphic representation of the resul:s was then set up.

This first system was based on a fixed structure of the result files, and the programs
* using this structure were conseouently not very flexible.

Eventually, new needs appeared (catalogs and comparisons) and their implementation
made the system more complex and less eificient as these new nossibilities could not always
be adequately integrated! cinally, new models were introduced to the system for which the
fixed format was not adequate.

A second system, more flexible and more oowerful, was undertaken in May 1981. The
object of this document is to present this new system. it consists, on the one hand, of
a nucleus, made of general packages, which nermits the creation and maninulation of result
files consisting of functions of arbitrary dimensionality; and on the other, of a set of
* rograms adapted to precise tasks (graphic renrensentation of the results, comparisons).

The order of the sections goes from the general to the Darticular.

Section two presents the objectives which oriented the design and implementation of
the system.

Section three gives a comprehensive view of the system.

- Section four presents the different packages forming the nucleus.

Section five presents the programs which generate the various products (drawings,
catalogs) of the laser modeling project.

The conclusion returns to the objectives presented in section two and discusses to what
extent they have been attained.

6
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11 - OBJ!CT fS

The design of the different packages composing the production system for the laser
numerical modeling project has been elaborated from the following goals:

- modularity
- flexibility
- reliability
' efficiency
- transportability
- adequate documentation

.1 MODULARITY

Modularity imolies that a Job is divided into tasks and that execution of a given task
is confined within a set of routines.

By proceeding, such a task is isolated from the rest of the program. The use of
oackages is modular since they are indenendent from the programs and can therefore be used
In various ways in various programs.

2.2 FLEXBILITY

Flexibility is the quality of a software which not only answers a precise need but
also adapts to a range of similar problems.

Software products must therefore be given a maximum of generality and flexibility in
view of current and future needs. Ideally, a software should handle the general case.

But in reality, it is often neither possible nor desirable; and restrictions are
necessary.

In such cases, flexibility is then measured by the facility with which the soitWare
* can be modified in order to byp.ass its limitations or restrict their impact.

' 2.3 RELIABILITY

Reliability combines two major aspects.

The first aspect is that a software must give the'control back to the operating system
- -. only if it wishes to do so. This means that a software must prevent conditions (such as

memory overflow) where the operating system would otherwise force it to stop.

The second aspect is that when a routine or a Drogram does return results, these must
be correct; otherwise no results are produced and an error message is returned.

2.4 EFFICIENCY

*. When designing a software, the limited and often costly resources given by an operating
* .system, often shared by many users., must be taken into account.

diskTechniques which minimize factors such as computation time, memory requirements and
disk access ire thus essential. Moreover, reduced use of the resources may have a positive
impact on the turnaround time, and then again, theL optimisations will directly benefit
the user.

2.5 TRANSPORTABILITY

It is often difficult to produce perfectly transportable software 1roducts. Neverthe-
less, techniques can be used to increase software transportability. Thus, machine dependent
and installation dependent features must be banned. in some cases, it is impossible to do
so (such as in I/O routines) and critical actions must be isolated in routines which can
easily be modified to adapt to other environments.

2. 5 ADEQUATE DOCUMENTAT!ON

Three types of documentation are necessary to describe a given system adequately:

Comments within the source code are necessary to maintain and modify the softwart.

A separate technical manual complements the internal documentaticn with a higher level
description giving the overall design philosophy and indicating the global struc:ure and

-interdependencies between the various nrocedures or prog7rams.

- * Finally, a user's guide is needed to indicate clearly how the soitware is to be used.



III - A COMPREHENSrV!. 7!BW OF THE SYSTEM

The system supporting the laser todeling project has been developped on a pair of CDC
CY3ER 173 computers at the Centre de Calcul of the Universith do Montr6al. It consists of
programs and packages written in FORTAN 1V. The three major tasks accomplished by the
system are:

- generation of simulation results,
- drawings of the results of an individual simulation,
- comparisons of results between simulations.

3.1 GENERATION OF RESULTS

The study of lasers is done with programs simulating the spacial and temporal evolution
of a laser impulse, in conformity with a given numerical model. Initially, there was only
one program which was using a single laser cylindrical model. Eventually, with developments
in the physics theor-, the initial model was imoroved (it now takes into account Doopler
effects, oscillatory phenomena, ...) and new models were developped (2-laser model, Cartesian
model). There are now many laser simulation proqrams, each being the starting point of a
data-base of results associated with the model.

Each simulation is controlled by a set of oarameters defining the material and the field
through which the laser impulse propagates. These parameters are given to the laser programs
as FORTRAN NAMELISTs. For each model, simulations are identified through a unique number.
This number is-included in the NAKELISTs as a special parameter. The results of a simulation
are written on SIMRS type files (SIDulation RESults). Each file is identified through a root
to which a suffix is added; the root corresponds to the identifier of the program which pro-
duced the simulation, and the suffix is the simulation number.

SIMRS files contain general information (name of the originating program, version number
of the program, creation date of the file, ...), the list of the simulation parameters, and
the results of the simulation. The way results of a simulation are handled can be sunmari:ed
in the following manner:

- The programs evaluate functions of varying dimensionality and the parameters of the

simulation determine at what points these functions must be evaluated.

Values of the functions are kept in SIMRES files for a given sample of evaluation points.

As can be seen, all the information relative to a simulation is kept on a single entity,
i.e. the SIMRES file. In this basic scheme (NAMELISTs, simulation programs, SIMRES files),
DATSIM type files and the program DEFPAR1I were added. The program DEFPARIM (DEFinition PARa-
Meters) is used to assist the user in writing NMELISTs. It is an interactive program which
allows the user to describe a simulation of a family of simulations by using a compact syntax,
and in return produces the corresponding NAXELISTs. Although this program may not be essential,
its advantage is to relieve the user of the chore of writing often repetitive NAMELISTs.

It also avoids trivial errors such as syntax errors in NAMELISTs and errors in parameter
names.

The emergence of DATSTH files is linked to a context of intense production. Moreover, to
be efficient at a production level, it is necessary that any information concerning any given
produced simulation be aviilable. SIMiS files being too large and too numerous to be all keot
on disk, a mechanism has been laid to transfer data between disk and tape. This archival sys-
tem is essential, but it considerably slows the access to information. To be efficient, we
must then compromise and keep on disk some high priority informations concerning all produced
simulations.

The informations are gathered in a data base consisting of DATSI1 type files (DATa SIMul-
*" ation). DATSIM files contain, for every simulation produced by the irogram:

- general informations, identical to those on SIRES files,
- values of the simulation parameters,
* evaluation points and values of the functions used in comparisons.

The program XtAJDTS (Mise-A-Jour-uodate, DaTSim) reads useful informations on a SIMRES file
and writes them on the SIrlR!S file. It is noteworthy that the information zontained in :he
DATSIX file is used by the program DEFARM to get the numbers to be assigned to new simulations.

The configuration of the system, as regards to the produc:ion of simulations is given at
*figure 3.1.

The suffixes 1CFS, ZCS, 1PS, :PAS refer to the different laser nodels (these will be
explained in Section 3).

0



Consider model ICFS (!-laser Cylindric Frequency Statistics nadel). The program DEF??PAR
• .akes the specifications from the user, validates them and writes on the file SX!C7S (Simul-

ations to be aXecuted) the data needed to produce the simulations recuested. Then, the program
LRICFS (LaseR) reads the ippropriate date on the iile SH1CFS, generates the simulation and
produces a SIMRES file whose identifier is L.1CFS -no) ((no): simulation number).

Finally, the file LRIC"S (no) gives the vrogram MAJ)S the information needed to register
the simulation on :he file DTlCrS (DaTsim) which contains a summary of the simulations carried:"" out with the =odel ICFS.

3.2 DRAWINGS OF A SIMLATICN

The study of the simulation results requires graphic support in order to visuali:e the
profiles of the functions evaluated by the simulation programs. The program DESIMS (dessin-
drawing, simres) has been designed to offer such assistance. This program can be used either
in batch or interactive mode.

Drawings needed are specified by using a syntax whose structure is similar to that of a
program and allows inner loops on simulations, functions, selection criteria, etc. The user
can thus indicate in a short way what drawings he wishes to have.

The commands given by the user are analysed by the program DESRES, which breaks them up
in single units, using the package XTRACT. The SIMRS.S files then give all the information
needed to identify and produce the drawings. There are four types of drawings available:

- 2-dimensional representation of a function,
3-dimensional representation of a function,

- 2-dimensional projection of a 3-d representation.

The 3-D projections and the level curves are performed by the program TRASURF (CACM
sept /74~).

Figure 3.Z presents the portion of the system which carries out the production af
* drawings.

3.3 COMPARISONS OF RESULTS 3ETWEN SIMULATIONS

The program SYNTH (SYNTHesis) has been designed to allow comparisons of results between
simulations. A comparison is done by superposing on one drawing 2-dimensional representaticns
oi either functions coming from different simulations or functions for which each point comes
from a different simulation. The program SYNTH is a powerful tool; it can be used in both
interactive and batch mode and its scope includes the three following applications:

. - Comparison inside one simulation.

- Comparisons between simulations of a same model, bringing out the role of certain
parameters in : or more laser models, and the role each laser plays.

- Comparisons between the different models to demonstrate their impact. The user speci-
fies the work to be done either by defining the objects to be compared and the comparison
criteria or by indicating where to search for the objects to be compared and how to organi:e
the comparison. in this last case, part of the search procedure needed for the definition
of the comparison is done by t)e SYNTH program.

After validating and acceptinq the request, the SYNTH program produces the necessary
headings identifying the comparison (by isolating the fixed parameters from the variable ones)
then effects the drawings corresponding to the comparison.

The running of a coomarison requires all the information needed at the same time on one
disk. It is at this level that the DATSIM files are useful as they give actess to the para-
meter list of all the simulations already produced and to certain functions often used in the
comparisons. Nevertheless, the data on the DATSIM files are not always sufficient, the user
therefore must revert to the archival procedures of the needed SIMRES files.

This structure is presented in figure 3.3.

r.
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1V THE PACKAGES

The packages are the lower level of the system. Beside answering a particular applica-
tion, their role is to solve a problem in a general day. Each package is made un of several
procedures accomplishing a precise task. The packages presented here are the following:

- - S V S generation of the SIMRUS files;

- XTRACT : operation of the SIM.ES files;

- DATSIM: generation and operation of the DATSII files.

4.1 TIM SI1RES PACKAGE

The SI.RES package aims, on the one hand, to keep on one single file all the information
relative to a simulation and on the other, to provide self-descriptive files, or files that
carry the necessary information to describe their organization. By proceding this way, the
integrity of the information is insured (all data relating to one simulation is concentrated
in one file) and the system is givea a greater flexibility when faced with changes (the orga-
nization of the file varies, the key is in its description).

4.1.1 DESIGN OF THE .M-SULTS FILES

The different simulation models describe the evolution of a laser pulse in a space of n
dimensions. The value of n, the number of dimensions, depends on the model. To each dimen-

" sion corresponds an axis identified by a name and by units. The simulation programs results
"" are functions defined on the reals:

" i Z d i _

where i =,2,.. . (M = number of functions)

o < di ! N (N : number of dimensions of the simulation space).

For instance, in the 1CFS model involving a 4 dimension snace defined by the STASTIC,
ETA, RHO and TAU axes, the 0 POWER function depends on the STATISTIC, ETA and TAU axes
(N x 4 and do POWER 2 3).

The functions assessed by che simulation programs correspond to continuous phenomena.
But the fact of using a computer makes it important to make them discrete. Thus, the points

- at which a function has to be assessed is determined by associating them to a sampling grid.
When only one sampling grid is used for all the functions, it can be said that this grid
constitutes the discrete space in which the simulation evolves.

*" It would be very costly to keep, for each value of a function, the value of its points
of assessments. it is thus of prime importance to find a more comract method to describe the
sampling grids.

The simplest sampling grid is the linear orthogonal grid which can be described by giving
for each of the axes that make up that grid, a starting point, an increment and the number of
points on the axis. Figure 4.1 shows such a grid.

* However, the linear orthogonal grid offers little flexibility. Thus, in order to follow
more adequately the phenomenon under study, there would be a need for a grid where the dis-
tance between the points, instead oi being uniform, is smaller in certain areas than in others.
This will define a finer grid where the phenomenon is more interesting. Such a grid is said
to be "nonlinear orthogonal" and can be described by keeping for each of the axis the value

"- of the chosen point: see figure 4.2.

Moreover, there may be a need for a grid even more adapted to the phenomenon under study,
for instance for a grid without the constraints of orthogonality. In this case, the coordi-
nate of the grid associated to an axis depends on the value on that axis and possibly on the
values on other axes. A grid in CaN can thus be described by M sampling functions fel, £e ...,

* fen each of these functions depending of an axis or on several axes for its assessment. what
is stored to describe the grid is then the values of the functions. Thus, in figure 4.3,
which illustrates a nonlinear orthogonal grid, the sampling grid fey, depending only on the Y

*.. axis, is completely described by a 7 points vector and the function fex , depending on axes
. x and y, is described by a matrix of 7x7 points.

"* This last method is the most advantageous and :hus, it is the one most used here.
in fact. this method permits the description of grids as general as possible while avoidingthe redundancy of the information at the level of :he values of the points on the axes. For

this method, the use of space is proportional to the "complexity" of the sampling functions.



The definition of 2 sampling grid often requires that the points be sufficiently c¢ose
together and sufficiently numerous to assure the stability of the numerical technioues used.
Thus, it is possible to store more informatian than is required to visualize the phenomena.
Even more, it is possible that the results files may not be kent on the same disk unit:
for instance, the complete Cartesian laser model assures four functions for more than a
billion points (7 points for the STATISTIC axis x 300 for the BTA axis x 95 for the X axis
x DS for the Y axis x 64 for the TAU axis) which is far beyond the space capacity of a disk.

It is thus essential to reduce the volume oi data to be Dut on file. This is done by
introducing a selection mechanism which chooses those points of a sampling function for

*- . which the data is effectively being stored. This selection is done by specifying the number
of the starting point and an increment in number of points. This simple way of proceding,
together with an as precise a grid as is required gives enough flexibility to make a perti-
nent choice of data for storage.

4.1.2 USAGE OF TH! SIMRES PACtAGE,

The procedures of the SIMES package create the SI.T.P files (SIM for simulation and
IMP for temporary) which will later be converted to SIMRES files. These procedures are:

- SIMDEB : initialization of the package;

- SIMAX E definition of the axes;

- SIMECH definition of the sampling functions;

- SIMFCT definition of the functions;

- SIMSEL : definition of the selectors;

- SUMVAL writing of the values;

- SIMAVC positioning of the selectors;

- SIMFIN : end of processing.

Figure 4.4 is a diagram showing the sequence of the package procedure calls and the uses of
the special parameters, that is: those which identify the axes, the samling functions, the
results functions and those which build the dependencies between the sampling functions and
the axes, between the results functions and the sampling functions. All this is explained
more fully in the following paragrauhs.

The SIMDEB procedure initializes the writing process of a SIM4TMP file and records the
identification and the main characteristics of the simulation. The parameters of the proce-
dure are the following:

- ULSIM : unit number of E/S associated to the SIMTMP file;

- ULPRNT: unit number of E/S associated to the print file;

- ICRI : name of the program creating the SIMTMP file;

- IVER : program version;

* - NOSIM : simulation number;

- NBAXE : axes number;

- NBECH : number of the sampling functions;

- NBFCT : number of results functions.

* Figure 4.5 shows an example of a program when 3 functions in a 2 dimension space is assessed.
tor this example, the call corresnonding to SIDEB would be the following:

CALL SI DEB (1,5, 'SIUL , '1.0', 1, 2, 2, 3)

The SIMAXE procedure is used to declare each of the axes defining the simulation space.
The order in which the axes are declared deternines the order in which the S:M%,AL procedure
will receive the values of the functions. The procedure receives in parameter the foliowir
information:

- DAXZ : the axis identifier;



;:" " i" -' - -". ...° . . " : . . . . . . . . .. . ... . •

- NPTAXE: the number of points of the axis;

- UNITAX: the MKSA units used for the graduation of the axis (meters, seconds, ... );

- EXPUNT: the exponent affecting the units, for instance: if UNIT.X 'seconds' and
EXPUJNT = -6, we have microseconds;

- FACJNT: the multiplying factor affecting the units.

The received information is recorded in the SIriTP files. In exchange, the procedure ini-
tializes the NUIAXE parameter (number of the axis) which identifies the axis in the SIMRES
and DEPA.XE (axis dependency) package which will mark the dependency of a sampling function
with regards to an axis. It is important to note here that the value given to the DEPAXE
parameter is in the power of two, thus the dependencies can be combined by addition. For
example, the calls for SIMAXE will be the following:

SIMAXE ('x', 7, 'METERS', -2, 1.0, NUMAXX, DEPAXX)

SIXAXE (ly', 3, 'METERS', -2, 1.0, NUt.AOXY, DEPAXY)

The SIECH declares to the SIMPES package the sampling function. The procedure receives
in parameter:

- IDFECH : the identifier of the sampling function;

- UMAXE : the number of the axis to which the function applies;

- DEPAXS : dependency in term of the axes of the sampling function, DEPAXS 2 DEPAXE
ke~i} k

where k corresnonds to the axes of which depends the function and (i} is the
body of available dependencies for the axes.

In exchange, the procedure initiali:'es the NUWFEC parameter (number of the sampling function)
which identifies the sampling function when recording its values and the DEPFEC parameter
(dependency of the sampling function) which will be used to mark the dependency of a results
function as to a sampling function. In the example, the calls to SIMECH would be:

SIEUCH ('XFC', WUtAXX, DEPAXX * DEPAXY, NUXFCX, DEPFCX)

SIEC, ('YFC', NUAXY, DEPAXY, NU?4FCY, DEPFCY)

The SIPCT procedure defines a results function (as opposed to a sampling function). The
procedure receives in parameter the identifier of the function (IDFCT) and its dependency in
term of sampling functions (sum of the value type DEPFEC iedback by SIMCH). The NUFCT pa-
rameter returns the number of the function: it is the number that must be used in the calls
to SIMVAL to identify the values of a function. Thus, in the example used here, the three
functions would be defined as follows:

SIMCT ('ENER', DEPFCX , DEPFCY, NIMFEN)

. SIMFCT ('PEAKX', DEPFCY, NUMFPX)

SIMFCT ('PEAKcY', DEPPCX, NUMiPY)

The procedure SIMSEL changes the value of lack of selectors of an axis for one or several
functions. By their absence, all the noints of an axis are selected. The parameters of the
SIMSEL orocedure are the following (there is no exit parameters):

- TA3FCT : vector containing the numbers of the functions;

- DIMTAB : give the number of elements in TABFCT;

- .%MAXE : number of the axis for which the selectors are to be changed;-

- DEBSEL : number of the first selected point;

- INCSEL : increment for :he selected points.

It must be noted that changing the selectors of an axis affects only those functions whose
numbers have been received by SIMISEL. Thus, in our example, the following call:

h SIMSEL (NUIFEN, 1, NI',AXY, 1, 2)



implies that the values of function BNER will be kept only for I of 2 points of.the Y axis,
but this does not touch the PEMX function which also depends on the Y axis.

The SIMPAR procedure allows the addition to the SIDTMP file of the simulation parameters;
in that way, the data needed t3 identify the simulation always comes with the results. The
procedure receives the following information:

NA2t.E : parameter identifier;

TYPE : complete code giving the type of the parameter (0 for complete, 1 for real, )"

VALUE : list of values of the parameter (vectorial parameters are allowed);

NBELEM number of elements in VALUE array.

Thus, in our example, there will be the two following calls:

SIMPAR ('PHI', 1, 20.0, 1)

SIMPAR ('THETA', 1, 45.0, 1)

The SIMVAL procedure writes the values of the sampling functions or results functions.
The SINRES package awaits the values of the functions in an order which is induced by the
axes declaration, the last declared axis varies first. As there is no order among the func-
tions, and as each function can evolve at its own rythm, it is expected that the values of
a same function are dispersed in the SIUMTP file. It is thus necessary that the SINVAL
procedure precedes each block oi values by a label identifying the function and the length
of the block. It is also the SIIVAL procedure which controls the application of the selec-
tors (thus it may happen that SIMVAL is called and that nothing is written on the sI.MTMP
file). The parameters of the procedure are the following ones:

- NOFCT : number of the sampling or result function;

- TABVAL: list of values;

- NBVAL : number of values in TABVAL.

Figure 4.6 gives a valid scenario for one example showing the use of the SIMVAL procedure.

The SIMAVC procedure was conceived to make pre-positioning and in that way contravene
the order imposed by the writing of the values of the functions. The procedure changes the
context of the required functions by replacing the numbers of the last points of the axes
that have been recorded by numbers entered in tarameters. This "skip" is noted in the SINTr4P
fIle by a special label. Thus this procedure avoids loading the SIMTMP file with unusable
values where it is impossible to correctly assess one or several functions. The parameters
of this procedure are as follows:

- TA3FCT : list of functions numbers for which the context is to be changed;

- NBFCT : number of functions;

- TABIND : list of the numbers of the points on the axes for each declared axis;

- NBInD : number of values in TABIrD.

The SIMFIN procedure, which has no parameter, must be called on to terminate the genera-
tion of the SIMITMP file. This procedure adds an end of file mark to the SIUMP file.

4.1.3 CONVERSION OF SINTMP TO SINRES

The SIX Mrp file is a seouential file in which the oosition of the values associated to
| the different functions depends on the order in which they are written. The dispersion of

the information in the S1.TMP file makes the search for the values of a function quite long
and complex. The SIMNET program (SIM for simulation and .MT for cleaning) has thus been
created to convert a SINr"P file to a direct access file in which the values cf a same func-
tion will be in consecutive locations. This new file format is the SIMERS format.

Figure 4.7 shows the functioning of the SIMNET program. it is possible to create a file
where the values of each function are pooled because the SVIRES program knows the number or
values of each function and can thus assess the locations where the writing is to be made.

- For this, a memory :one is divided in as many buffers as there are functions on the SImTVP
file. The size of each buffer is determined in such a way as : minimi:e the number access
to the disk. The program reads the SINT P file sequentially, pools the "bits" of functions
in the appropriate buffer and, when the buffer is iull, it is written at its place in the
S INRES file.
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The si:e of the memory zone required for proper functioning has made it necessary to
opt for a special conversion program rather than directly writing the results in the SINAsS

- format. It has thus been deemed preferable to have a program using a large working area
during a short time spread, rather than adding this time to simulation prograns already
quite loaded and using already too much time.

4-Z LHE XTRAC7 PACKA~GE

The XTRACT package allows the extraction of information from the SMIES file. Thepackage procedure can be divided into three sub-groups. The first sub-group includes the
EXTDEB procedure which initializes the XTRACT Package. The second includes the procedures
which extract the descriptive information, that is the information written by the SINME,

* SIICcH, S'.FCT and SIMPAR Procedures. These are procedures that work more or less alone.U Finally, the procedures of'the last sub-group extracts the values of the function of a
SINRES file, that is the information written by the SL4VAL procedure. These procedures
are interdependent and they follow a rigorous sequence.

4.2.1 THE EXTDEB PROCEDURE

The EXTDIB procedure initializes the package and opens the SEIES file on which the
other procedures will work. It is thus essential to call the EXTDEB procedure before trying
to extract any information from the SIMRES file. The procedure getsas parameter the name
of the SIRES file and the number of logical unit of E/S associated to the printing file.
-n exchange, the procedure gives the following information: the name of the program gene-

. rating the SINRES file, the version number of this program, the sequential number of the
L.- file and the computer on which this file has been generated.

4.2.2 PROCEDURE OF E.rarCTION OF THE DESCRIPTIVE NFOMATTON

This sub-group is composed of the following procedures:

- EXTTIX gives the date and the hour of the generation of the SIMES file;

- EXTNOM : gives the axes identifiers, the sampling functions, the result functions
or of the parameters;

- EXTAXE gives the characteristics of an axis;

- ETECH : gives the characteristics of a sampling function;

- EXTFCT : gives the characteristics of a results function;

- XPAR : gives the characteristics of a parameter.

It is important to note here the particular role played by the EXTNOM procedure, which provides
the identifiers of different objects (axes, functions, parameters). The characteristics of
those objects could be later called up by the appropriate procedure.

The running of each procedure is relatively easy. The input parameters identify the
needed information. This information is extracted from the SIMRES file and returned to the
caller through the output parameters. Figure 4.8 gives a list of the parameters of each
of procedures of this sub-group.

4..3.S PROCEDURE FOR THE EXTRACTION OF THE RESULTS FUNCTIONS

The procedures which extract the values not only locate and retrieve the information on
the SI-4RES file but they also have a mechanism which splits the data to be extracted in sub-
groups or pages. At this Point, :he extraction loop allows the routine to receive data page
by page. This mechanism has three steps.

The first step consists in establishing the field of extraction, i.e. the set of eva-
luation points for which a value of a given junction is needed. This specification is done
by indicating the name of the function and by giving, for each of the axes on which the func-
tion depends, a list of selection intervals. Each selection interval is defined by the number
of the first and the last point of the interval and by an increment. The special value, in
this case 0, allows us to choose all the points of an axis. For instance, for function A
which depends on axis X, we can choose the points 1 to 20 by sets of S and :he points 22 to
30 by sets of 2. The order of the presentation of the axes is important because it induces
the nesting order of the extraction'loops. Moreover, the choice of the selection intervals
must take into account the points for which the requested iunction has been assessed and
written in the sIfiEs files.

The second step establishes the segmentation of the extraction field and the specifica-
tion of the tuples configuration needed. The segmentation of the extraction field is done



by giving the number of axes that must vary to form a page. These varying axes are always
the last to be declared, and they are called the internal axes. It is thus the external
axes, those left aside, which will define the loops extracting the different pages. Figure

, ,4.3 gives an example showing the extraction field and the segmentation of a function.

The information fedback by an "elementary" extraction has a list of tuples of the form
(<value of the results function>, <value of the sampling function 1>, ..., <value of the
sampling function M>) and a list giving, for each non-identified axis in the tuple, the value
of the point where the extraction has taken place. In the case of orthogonal grids, the
tuples must be composed of the value of the function followed by the value of the internal

axes points. The list of the axes points should give the value of the external axes points.
Thus the varying data is separated from the fixed data, this avoids redundancies. However,
this is not always the case. In fact, when the grids are not orthogonal, it is possible
that even the iniernal axes may have different points for each of the values of the results
function. In order to hold the possible different cases and to permit a maximum of flexibi-
lity, the X.rUCT package works either by the explicit snecification of the composition of a
tuple or by a specification by default where all happens as if in an orthogonal grid. The
explicit specification of a tuple is done by giving a list of the axes for which we need the
values of the point in the tuple. In this case, the identification of the points of the
other axes is done when possible in the list of the axes points (i.e. as this list gives
only one point per axis, if I axis varies, the value is indicated as I300). Figure 4.10
shows the example of figure 4.9 and the organization of the tuples and the list of axes

upoints.
The third and last step consists in calling the extraction procedure as many times as

needed by the segmentation. The role of the package here is to control the evolution of
the loops dealing with the external axes, to retrieve the data making up a page on the SIMRES
file and to organize the tuples and the list of axes points according to the required confi-
guration.

One option of the XTRACT package gives as an added information the minimums and the
maximums of the functions and axes making up a tuple.

if Indispensable for graphic applications, this piece of information can easily be obtained
if the minimums and maximums can be assessed on one page. 3ut this is not always the case.
There may be a need for the minimums and maximums for a larger set of values: for example,
for the field of extraction or even for all the SW.ES file. In these cases, the application

- program must make a special extraction run to assess the minimums and maximums. This task
has therefore been given to the XTRACT package which will do it in the most efficient way.

In terms of application, by obtaining the minimums and maximums, it is possible to
*_ establish a scale to express the values obtained in the tuples. The .TRACT package can

assess the minimums and maximums on three specific fields defining three ty-es of scales:
the global scale, the local scale and the standard scale. The global scale is defined
by all the values whether selected or not from an axis or a function. The local scale is

". defined by the values of an extraction page. And finally, the standard scale is defined
by the field of extraction either by taking the whole field or by taking a sub-set of this
field. In this latter case, the sub-set is delimited by an axis, and each time the counter
of the axis is incremented (i.e. there is a change of point), the minimums and maximums of
the points covered by the interior axes must be reassessed. Figure 4.11 gives an example
of the different scales.

The EXTRAC, EXTSEL, EXTDEF and EXTTUP procedures show how the work described above can
be processed.

The extraction process starts with the EXTRAC procedure. This procedure specifies the
function from which we would like to extract the values. It gets in parameter the identifier
of the function. It outputs NBAXES a complete parameter giving the number of axes on which
depends the function and IZRR indicating, and if it exists, the number of the detected error.

Second, the EXTSEL defines the field of extraction. A call on the EXTSEL procedure
indicates for an axis on which the function depends, the number of the points for which we
need the values of the function. This procedure must be called NBAXES times and the order

4 in which the axes are presented is important for the definition of the extraction loops.
The procedure receives the following parameters:

- IM : the axis identifier;

- SELAX"E : list of selection intervals, one selection interval is made up of either
3 values (the first selected point, the last selected point and an incre-
ment) or the value 0 (all points are selected);

- NBSEL : gives the number of intervals in SELAXE.



The procedure outputs the following data:

-PTSEL : indicates the total number of Points chosen on the axis;

- FIX! the boolean value which is realized if the value of the points on the axis
does not depend on other axes, i.e. if :he grid is orthogonal in relation
to that axis;

- ERR : in case of error, writes the number of the error.

Third, comes the !XTDEF Procedure which defines the configuration of a page, the compo-
sition of a tuple and the type of scale needed. The procedure receives the following data:

- NBDIM : defines the cut by giving the number of axes that must be made to vary to
obtain a tuale page (the innermost axes vary first);

. - TABAXE : explicitly specifies the contents of a tuole by giving the list of axes which
make up the tuple. This chart is only used if NBAXE > 0;

- VBAXE : if this Parameter is less than 0, then the option by default is applied and the
tuples are made un of the value of the function followed by the deepest NBDIn
axes. If not, then the tuples are made up of the value of the function and of
the NBAXES axes declared in TA3AXE;

- TY3ECH : is a chain of characters which gives the type of the requested scale. The
possible values are: none, global, local, standard;

- AXSECH : specifies, in the standard scale case, an axis which limits the scope of the
scale: i.e., the field of the standard scale is then defined only.on the axes
deeper than that axis.

The procedure outputs NBEIT the number of pages necessary to cover all the field of extraction
and IERR indicating if an error has been detected.

Finally, it is the EXTTUP which carries out the extraction of the information and the
computations of the scales. Usually, this procedure should be called up NBEXT times so that
all the field of extraction is covered. The parameters of this procedure are the following:

- TABVAL : the array containing the tuples. For a given extraction, the structure of
the array is TABVAL (DII'rP NP? 1 ..... NPTj) where DVTUP is the number of
the value making up the tunie, NPT1 the number of points selected on the
deepest axis, .... 1PT4 the number of points selected on the least deep axis
making the Page;

- DIMTAB : input parameter giving the total dimension in number of TABVAL words;

- TABIND : gives the numbers which identify the non-varying axes;

- TAVAX : gives the value of the points on the non-varying axes;

- DIMIND : input parameter giving the dimension of the TABIND and TABVAX arrays;

- TABECH : array giving the minimums and maximums for the function and the axes making
up the turle;

- DIMECH : input parameter giving the number of TABECU columns (there is always Z lines,
one for the minimum and. one for the maximum);

- IERR : indicates the presence of an error.

Figure 4 .1 shows the call sequence of the EXTMAC, EXTSEL, EXTDEP and EXITUP procedures.
As can be seen, !t is Possible to define the cut of a field of extraction, the configuration

" of the tuples and the type of required scale and then to restart the extraction of the values.

- 4.3 THE DATSIM PACLAGE

When a group of entities (or objects) have the same information fields, the DATSIM package
stores these fields, or a sub-set of these fields, in a same direct access file thus creating
a kind of data bank. In this data bank, the model, that is: the necessary information needed
to operate the file, specifically the descrintion of the fields of information, is keat in the
file heading. The recording of the data bank is made up of the Information field of one entity.
By giving a sequence number to the different entities and an identifier to the different infor-
mation fields, it is nossible to construct keys which will identify in a unique manner :he
different recordings.



Zn the DATSIM file, an entity can then have as many recording as there are information
fields. When applicable however, the DATSIM package avoids an excessive proliferation of
recordings by defining a value by default for an information field. At this moment, all the
active entities (an entity may be non-active) of the data bank must have the same information
fields. If the recording of an active entity does not show up in the data bank, then it has
a value by default.

In the context of the laser modeling project, the DATSIM package keeps on disk a summary
of the SUIUMS files. It is thus possible to concentrate in one file, information which would
have been otherwise dispersed in several files and only a small part of this information would
have fit on disk (the major part of the SlIqES files would be filed away on magnetic tape).

The summaries of the SI,.ES files produced by a laser simulation program are regrouped in
a same DATSIM data bank. A simulation is an entity at the level of the data bank, and the
simulation sequence number (which is also the S$XORBS file number) identifies the recordings
belonging to a same simulation. The information fields written in the DATSIM files are:
some general information on the simulation, the parameters of the simulation and the values
of the results functions usually implicated in a comparison.

The components of the DATSVI package can be divided into two sub-groups. The first is
made up of programs which generate and modify a heading of a DATSIM file. The second sub-
group is made up of the procedures that allow the running in reading and writing node of a
DATSIM file.

4.3.1 GENERATION AND MODrFICATION OF A DATSIM FIL!

T'he generation phase of a DATSIM file is done in two steps. First, the generated file
holds in its heading only the data needed for an empty DATSIM file. Next, the description
of the data that can be recorded in the file is added to the heading. It is preferable to
write from the beginning the descrintion of all the information fields, however it is also
possible to make additions to an already operational DATSUI file, that is: a file which
contains other data than the descriptive ones.

The DATCRE generates the base of a DATSIM file. This program reads in the inpur file
the generic name of the entities composing the data bank, namely the name of the simulation
program producing the SPHRES files which feed the data bank. The base of a DATSIM file
includes the identifier of the current version of the DATSIM package, the generic name of
the entities, the sequence number of the last entity for which data has been recorded, that
is 0, and the number of information fields described in the heading, which is also 0.

The DATEDI program adds to a DATSIH file heading the description of the information fields
that can be recorded in the files. The input file of the DATEDI program include, in first
line, the command ADD or moDrFY. This command indicates to the DATEDr program whether it is
a first addition to the heading (command ADD) or of a subsequent addition (command MODIFY).
The description of the different information fields is found later in free form in the input
file. This description includes the field identifier, the field class, the type of values
of the field (complete, real, boolean, chain of characters), the number of values by default
that follow (possibly 0), and finally the list of values by default (possibly empty). The
information field class is an identifier known by DAT3IM (through an interchangeable table)
which allows the pooling and the organization of the information.

For security reasons, the DATED! program orocedes by two runs. In the first run, the
* data is validated. If no error is detected, then the program runs the data one more time

and writes the data in the heading of the DATSIX file. This way, it is possible to avoid
situations where an error invalidates work already done. Figure 4.1 gives an example of
data for the DATEDI program. It is to be noted that the number of values by default in no
way fixes the number of the values associated to a field: the same field could include
a varying number of information from one entity to another.

4.3.2 OPERATION 01 A DATSIM tILE

0 The procedures that run a DATSIM file are:

- DATDE3 : startingof a DATSIM file;

- DATNCH : returns the list o6 indentiFier of the information fields;

- DATINF returns the characteristics of an infornation fild;

- DATLIR : reading of a recording;

- DATECa : writing of a recording;

- DATACT : activation or non-activation of an entity;



- DATFIX : closing of a DATSIM file.

The information and the snace necessary for the manipulation of a DATSIN file are con-
centrated in a control block entered as a parameter at the different )rocedures of the
package. This way, an anplication program can work on several n'TSI files at the same
time on the condition of having a control block for each file.

Following is an overview of the oneration of each of the package procedures.

* ~ ckThe DATDEB procedure is called uaon to start a DATSIM file and to initialize the control
block associated to this file. Any attemnt to work with a DATSIM file without starting first
with DATDEB will be an error. The procedure will then receive as parameter the name of
DATSDM file to be started, the control block, and the size in number of words of the control
block (the suggested size is ZSOf words). The procedure returns part of the information
composing the base of the heading, in other words, the generic name of the entities making
up the file, the sequence number of the last recorded entity and the number of fields des-
cribed in the heading.

The DATNOK procedure obtains the list of the information fields identifiers. This list

is taken from the DATSIN file heading. The parameters of the procedure follow:

- DATBLK (input) : control block of the DATSLM file;

- - TABNOM (output): chart containing the information fields identifiers;

- DI MTA (input) : size of TABNOM;

- MENOMS (output): number of identifiers placed in TABNON.

The DATINF procedure obtains the characteristics of an information field. The parameters
of this procedure are:

- DATBLK (input) : control block of the DATSIM file;

- NOM (input) : identifier of field of which we need the characteristics;

- CLASS! (output): class of information;

- TYPE (output) : type of value of the information field;

- TABDEF (output): chart giving the values by default (if there are no values by default
for the field, the chart will he empty);

.. - DIHTAB (input) : size of TABDEF;

- LGDEF (output) : number of elements placed in TABDEF;

- IERR (output) : gives 0 if there are no errors, if not, it gives the number oi the
error.

the The DATLIR procedure reads the recording of a DATSI file, that is, it gives access to
the values contained in the information field of a given entity. If the entity exists (i.e.
if its sequence number is smaller than the number of the last recorded entity in the file)
and if it is active, the procedure assembles the key (entity number and field identifier)
and orders the reading of'the recording. If the recording exists, then all it does is to
transfer it to the caller. If not, then the procedure verifies if there is a value by default
for the field, and if it faids one, it returns it. In case the data required does not exist

.* at all, an error number is returned to the anplication program. Figure 4.14 shows schemati-
cally the running just described. The parameters are as follows:

- DATBLX (innut) : control block of the DATSIM file;

- NWISIM (input) : entity number (in this case, it is a simulation number);

- !H40 (input) : field of inforration identifier;

- TABVAL (output): field of information values;

- DIXTAB (input) : si:e of TABVAL;

-- DIXVAL (output): number of values read and returned in 7ABVAL;

- IERR (output) : gives I if there is no error. If not, it gives the error number.

. .. -a" "'"" " ~ ~ mm m m ~m -- / n m~
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The DATECR procedure can add a recording to a DATSIM :i'e. First, the procedure veri-
ifles if the entity at hand is new, in this case it must update the number of the last recor-

ded entity in the file. If it is an already recorded entity, it must see if it is active,
as there should be no access to the infornation field of a non-active entity. If all works
well until this step, then the procedure checks to see if there is no values by default for
the requested field. 19 none exists, then the recording is written in (in some cases, it will
be a rewriting). If however there is a value by default, then there must be a comparison
between the values by default and those received for the field. If they are equal, nothing
is written in the file, and the previous recording is deleted. if they are not equal, then
the recording is written into the file or the previous recording is replaced by the new one.
Figure 4.15 shows schematically how this is done. The different parameters of the procedure
are as follows:

- DATBLK (input) : control block of the DATSIM file;

- NMISIh (input) entity number for which an information field is to be written;

- NOM (input) : information field identifier;

- VALETUR (input) chart containing the field values;

- DUMVAL (input) : number of values in the VALEUR chart;

- IERR (output) gives 0 if there are no errors, if not, gives the number of the error.

The DATACT orocedure specifies the state of an entity in the DATSIM file, in other words,
an entity can be active or non-active. The recordings of a non-active entity cannot be re-
treived but they are not destroyed. Thus by reactivating a non-active entity, we can have
access to its recording; The parameters of this procedure are as follows:

- DATBLK (input) : control block of the DATSIM file;

- NUMSIM (input) : number of the entity that has to be modified;

- ACTIF (input) : boolean parameter with itse\rrue values if the entity is active, and
its false value if it is non-active.

- IERR (output) : gives 0 if there are no errors, if not, gives the number of the error.

Finally, the DATFIN procedure terminates the operation of the DATSIM file. It is impe-
rative to call the DATFTN procedure because the buffer associated to the DATSIM fii iust be
cleared. The only parameter of this procedure is DAT3LX, the control block of the DAZSIX file
that is to be closed.
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Axes NB. Points Units Exp. Factor

X 7 meters -2 1.0
Y 3 motors 02 1.0

... Sampling functions

. fox (X, Y)

Results functions

PEAI CX) PEAICY (fex)

Selection parameters

axis Y one point out of 1 o M PHI t .0 0
THETA 45.0

FIGURE 4.5- CONTEXT DEFINITION TO ILLUSTRATE THE USE OF SIMRES PACKAGE PROCEDURES IN A PROGRM
,.._-

REAL ENERY (8),
PEAKX,
PEACY (8),
AXEY (8),
AXEX (7),

<Establish axis Y>
O call SIVAL (NUXFCY, AXEY, 3)

DO 10 IX s 1.7

<Establish a column of axi X>
call SIIVAL (NUMFCX, AXEX, 3)
DO 20 IY a 1,8
ENERY (IY)

- ZO continue
call SIMVAL (NU?'FEN, ENERY, 3)

*" PEAKCX a 4AX (ENERY, 8)
call SIMVAL (NUMFPX, PEAKX, 1)

<asses partial PEACY>

10 continue
4 cal. SI VAL (W.UFPY, PEAKY, 1)

FIGURE 4.6 - USE OF SIMVAL PROCEDURE
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FIGURE 4.7 - CONVERSION OF A S12MIP FILE INTO A SIMRIS FILE

Procedure Parameter Descriotion
EXTTIM DATE (output) Date of generation of the file

HOUR (outnut) Hour of generation of the file

EXTNOM KIND (input) Indicates which identifier is needed
AXE - AXES
ECH - sampling functions
=CT - results functions
PAR - narameters

TABNOM (output) List of identifiers
DIMTAB (input) Size of TABNOM
NBNOMS (output) Number of identifiers put in TABNOM

EXTAXE NA-P? (input) Axis identifier
UNITS (output) TF'pe of units of the axis
EXPO (output) Exhibitor affecting the units
FACT (output) Factor affecting the units
PSOL (output) Number of resolution points on the axis (not to be

mistaken with the number of selected points)

EXTECH NA (input) Identifier of the sampling f'nction
AXEREP (output) Identifier of the axis associated to the function
AXEDEP (output) Boolean array giving the denendencies of the

" function as to each of the axes (1)
DIVIEP (input) Dimension of AXEDEP

EXTFCT NAME (input) Identifier of the results functions
ECHDEP (outout) Boolean array in which the : element indicates whether

the function depends on the ith sampling function
AXEDEP (output) Boolean array in which :he I element indicates

if the function denends on the ith axis
MMIEP (input) nimension of ECHDEP and AXEDEP

EXPAR NAME (input) Identifier of the parameter
TYPE (OUTPUT) Code indicating the type of paramezer (C: ccmplete,

1: actual ... )
TABVAL (outnut) Value of the parameter caa e a vector)
DIrAB (input) Dimension of TAB'%L
NBVAL (output) Number of effective value In TABVAL

" (1) The order of the elements is that in which they have been declared.

FIGURE 4.3 - PA TMETERS OF THE PROCEDURES EXTRACT-NG DESC?T'* INFORMATIONS FROM A SIMA5S
FILE
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Function X

TU TAUJ
0 !7H I I I P- -zC

1 34 SET.A Eh E TA

STAT 1 STAT= STAT 3

Extraction field

STAT = 1,3,2
ETA = IS,1
RHO z Z.2,1

TAU 2 TU

TAU _, _ _' TAU

ETA I
Segmentation: number of axes 1

S=v 10 pages

ETk E T1

FIGURE 4.9 - EXTRACTION FIELD AND SEGIENTATION OF A FUNCTION

Function A deoendinj on axes STAT, ETA, RHO, TAU Extraction field: STAT Z 1,3,2
ETA 2 1,5,1

RHO 2,2,1
TAU = 0

Number of axes on.a page: 1

A) Option by default Tules List of axes points

Value A p joint 1 TAU

1 page " *' 2 " o

3) Specificaticn oi Tuple a (TAU, ETA, STAT)

Tuvles List of axes noints

Value A IPoint I TAUIP'oint 1 ETA I Point1 OI
-. : I " I ." Il 1

F . , 1 M L1S

' - FIGURE .4.10 - TUPLE COMPOSITION AND LIST OF AXleS POINTS
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T 0
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Global scale
Fct A Y

min.1 1

Local scale: will change at each Page extraction

ex. page I Z 31, T 1, X 1.

Fct A Y
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max 12 .

page 2 Z 1, T 1, X 3

Fct A Y

min 161

max ie o

Standard scale FctA Y

m.rin .1 1

max 22 3

Standard scale: with Zas axis implying a reevaluation o the minimums and maximums
Fct A Y

minl 10 1

max 2 3
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main . 16 1 '

max .27 3

FIGURE 4.11 -EXAMPLE SHOWIG THE DIFFERENT SCALES
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( IFl4, T3XE, IAE, YPC

EXTSIL OM, SCH X NEEX, tIRE ) J

EXrTVP TABVAL, DItTAB, TABIND, TABVAX,
DIHIND, TABECH, DIMECM, IERR) J

FIGURE 4.12 -CALL SEqUENCE OF THE PROCEDURES PRODUCING THE RESULTS FUNCTIONS EXTRACTION

ADD

",RUNS BASE C014PLETE 1

JSAVI EASE COMPLETE 1 300

MSAVE BASE COMPLETE 1 32

KSAVE BASE COMPLETE 1 64

Cl BASE REAL 1 0.08
TIRHO BASE REAL 1 4.236669

IGY BASE CflHPLMT 1 I
71110 EASE REAL 1 3.1417317

AKAP PHYSIqUl REAL 0
FSKA PHYSZfQUE REAL 0
DATE TVIPS CHAIN 0

STARTS AnE MAL 5 1.0 2.0 3.0 4.0 5.0

*RHOPTS AXE REAL 4 0.0 0.1 0.2 0.3
DUUEE SYNTHI REAL 0

ENER SYNTH REAL 0

*FIGURE 4.13 -ELIEiPLE OF DATA FOR A DATED! PROGRA1I
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V - APPLICATION PROG!S

This section deals with the programs in the system that go beyond the frame of appli-
cation in the laser model building project. These are the DEFPARM, DESRES and SYNTH programs
created to treat in a general way a specific application. These also use the SI?4KES, X7TRACT
and DATSI4 software. All the examples in this chanter derive from the only source we have:
the laser model building project.

S. 1 THE 0!? PAR24 PROGRAM~

The DEPPARM program is an interactive tool which defines the FORTRAN NAMELISTs. A pro-
gram generation of the IMWELISTs is a good way to validate them (syntactically) and to avoid
certain trivial errors. DEFPALM is a program of general application but by referring to the
laser modeLbuilding project to describe its operation, the explanations will be more concrete.

In the DIFPARM program, the NAMELISTs are defined by statements that follow a specific
syntax. A set of statements establishes the varameters of a groun of simulations dealing with
a particular phenomenon. These simulations differ only by the value of a Limited number of
parameters. all the other parameters being fixed. It is because of these fixed parameters
that the information can be condensed and the syntax made more concise.

A statement specifies the value or values associated to a block of parameters. A block
of parameters is made of one parameter or a group of interdependent parameters (varying
conjointly). For example. A a 0 shows that a parameter has a given value. If the parameter
is to be given several values or that there be a simulation for each of these values, the
values are separated by a coma, A a 0,1,2. To specify that a group of parameters are inter-
dependent, forming one whole, varenthesis are used. The values associated to the parameters
are also put between parenthesis. The order of the elements in such a group is of major
importance, and the order of the parameters induces the order of the values. Moreover,

. there must be as many values in each group of values as there are parameters in the reference
group. Thus the following group of naraitecrs can be defined as: (A,B) a (0,1), (l,l).

[  Vectorial parameters are put between brackets and the different values are separated by
a comma: thus A 2 CO,l,2] or B a C]. The specific values of the parameters need not have
the same number of elements; thus: A a Cl,, C,2,33, C l,,3,4]. But the order of the
values is important as it corresponds to the order of the elements in the vector.

The statements are separated by semi-colons and an empty statement ends the specifica-
tion of a group of simulations. The following specifications can be written as: A 2 1;
B a 1,2; C a 0,1;;

The syntactic cards corresponding to the above mentioned syntax are shown in figure 5.1.
It is possible to go from the specification of a family of simulations to the exhaustive lists
of parameters of each simulation forming this family by making a Cartesian product between
the values given to the parameters, or a group of parameters, by the different statements.
Thus, the specification:

. A 2 1,2;
(BC) a (0,0), (1,1);
D -1,1;;

can create eight simulations (only.the changes in the values of a parameter are noted in the

following list).

lumber A 3 C 0

1 1 0 0 -1
2 1f',3 1 1 -l

S 2 0 0 -1
6 17- 1 1 -l
S$ 1

There are four principal steps to the execution of the DEFPARM program. The first step
is initialization. The user indicates for which simulation program he needs the XAMELISTs.
The DEFPALM program will find in the corresponding DATSIf file the number of the last encoded
simulation and of the possible parameters for the simulation. The DEFPARM program will thus
know which number to give to the new simulation and can verify the parameter identificatirs
that the user could eventually give it.

V .-



The second step is the specification of the simulation families. This can be done in
two optional parts: first: the DEFPAPM program will provide the specification of another
simulation, second, the user will give his own oarameter specification. In other words,
the user can:

I - define nothin?,
- define a base with the parameters of another simulation,

3 - give his own specification to a simulation family,
4 define a base and add to it his own specification.

Figure S.Z illustrates the second case and fi rure 5.3, the third case (the fourth case
is a grouping of the second and third cases). It is important to note here that the data
given by the user are in free form and that the errors found on a line will be flagged for
correction.

The third step is a correction phase which can be repeated as often as necessary. First,
the program lists, in a condensed form, the values of the parameters for each defined simula-

* tion, then it asks the user if he needs to correct these values, (this is in fact the only
kind of correction allowed). If the user wants to get into the correction mode, the program
will question him on each group of parameters. The program writes the group of parameters,

* :: using the same input syntax and the user answers either by a semi-colon (list of empty values)
to indicate no correction or by a new list of values which will replace those held by the
program. The correction phase will end either when all the groups of parameters held by the
program have been run for the user or when the user writes a period instead of a list of
values. The orowram will then list the new values of the parameters for each of the simula-
tions and again offers the user the correction phase. This procedure is repeated until the

2 user has finished his corrections. Figure 5.4 shows the correction phase associated to the
data entered on figure 5.3.

Finally, the fourth step is the production of the NAKELISTs Fortran and the storing in
the appropriate DATST?$ file the number of the simulation of the data is has just produced.
7igure 5.5 gives the NAMELISTs products for the specification of figures S.3 and 5.4.

The DESRP.S program generates the drawings of the functions stored on SIMRES type files.
-t reads the specification of the drawing, validates it and, if no error is detected, executes
it. The program can function in both the interactive mode and the batch mode.

The drawing specification is done by a special language using all the possibilities of
the XTVACT software. This language separates the information necessary for the definition
of the drawing into four levels: program, simulation, function, drawing. In here, the
information is interleaved, that is: if the information is the same for all levels, it is
not necessary to redefine them to give other drawing specification.

The user must give the name of the program which has produced the S:MRES files to be
drawn. This identifier will be the prefix used to build the SIMRPS files identifiers to be
localized. Following is the interaction between the user and the DESRES program (what the
program writes is underlined).

PROcRAPM: LR1CFS

For the simulation, the user specifies a list of simulation numbers to be drawn. These
numbers will be the suffixes needed to retrieve the SIMRS files. The syntax of this list
of numbers conforms to the following rules: a list of numbers is made of any sequence of
numbers and of sets of numbers separated by a comma and, finally, a set is defined by two
numbers separated by a dash. Thus for SIMULATIONS: 1-S, 10,1Z, what is needed is simula-
tions 1,Z,3,4,5,10 and 1Z.

For a function, the user indicates which function must be drawn and specifies the field
of extraction, that is, the set of evaluation points for which the value of the function on
the SITM.PS files is to be extracted. The function to be drawn is specified by an identifier.
The field of extraction is specified by giving the list of points to be selected on each of
the axes defining the function. These points must evidently coincide with those stored on
the SIMRPS files. A list of points is made of a sequence of point labels and of selection
sets separated by comes. 4 selection set includes the label of the first chosen point,
the label of the last chosen point and, optionally, of an increment. If this increment is
absent, the default increment is used: its value is 1. The special symbols S and - used
instead of the label point signify the first and last points stored in the SIMRES files
respectively, Finally, the key word TOUS CALL) can be used instead of a list to signify
that all the points of the axis present in the SIMS files are selected. For example:

FUNCTION: INERGY
__ 1ELCT STAT 2 TOUS (ALL)

"• (l,*,Z)
.E __ T U CS,.)



For the drawings, the user must indicate t he scale and kind of drawing needed. The
scale is specified by indicating one of the following identifiers: nLOBALE (the scale is
for the whole file), LOCALE (the scale is for a given drawing), STANDARD (the scale is for
the extraction field). If the chosen scale is the STANDARD scale, the user can also add,
between oarenthesis, the name of an axis to limit the scope of the scale to the axes within
this axis. For instance, i a function depends on the STAT. ETA, RHO and TAU axes, and if
the scale is limited to the standard scale on the ETA axis, this scale will be evaluated

*. for the ETA, OHNO and TAU! axes only and there would be as many standard scales as there are
noints on the qTkT axis. Sec:ion 4.2 zives more details on the nature oi the different

* scales. The kind of drawinp is indicated by the following identifier: PLOT 3D (surface
drawings), PLOT 2D (curve drawings), CONTOUR (level curves) and PROJEC (2 dimension projec-
tion of a sub-array of curves describing the surface of a 2 variable function). The kind
of drawing requested will induce a segmentation on the extraction field. Thus, one action
can produce several plots; that is as many plots to empty the extraction field. An example
of scale specification and type of drawing follows:

SCALE: STANDARD
DRW : PLOT 3D

The DESPES program will loop at the deeoest level, that of drawing, then ask the user
to specify a scale and a tvpe of drawing. To get out of a level: enter an empty line or

write the key word FIN (IM). The user goes to the other level and here, it is possible to
define this level or getting out of it. Figure 5.5 shows a complete example of a specifica-
tion for the DESRES program.

-- In the interactive mode, the DESRES program analyzes the user's request and indicates
* as soon as possible the syntactical errors (data in the wronv format) and the invalid spe-

cifications (the requested function does not exist ...). The program then asks the user to
hold some specification in order to continue its execution. When it is a submission by
batch mode, when an error is detected, the running is stopped but the syntactical analysis
can continue.

To execute a drawine specification, the SIMES program must first localize the SIMRES
files to be treated. These files are opened one at a time and the information showing
the function to be plotted, the field of extraction, the composition of the tuples and
the tve of scales is viven to the XTRACT software. This information recovered by the
EXTUP orocedure is processed by the appropriate plotting procedure (PLOT 3D, PLOT ZD,
CO.NTUD , POJFC). The program repeats this operation until all the requests have been
fulfilled or until a non-retrievable error occurs.

Figures 5.7 to 5.11 show the different graphic output of the DESRES program. Figure
5.7 shows the list of parameters identifying the plotted simulation. Figure 5.8 shows the
plot drawn by PLOT 3D for a 2 variable function. Figure S.9 shows the curves set by the
CONTOUR procedure for the same function. Figure 5.10 shows a projection of this function
as produced by PROJEC. And finally, figure 5.11 shows the plot produced by PLOT ZD for a
function which varies as to one axis.

5.3 4tE qYNTH ROGRA-m

The SYNTH! program permits the synthesis of the information of many distinctive simu-
lations in order to study a specific ohenomenon. This synthesis is done by selecting the
pertinent simulations necessary to draw out a specific phenomenon and by comparing one or
several functions of these simulations. In its final version, the SYYI program should
allow the user to soecify the phenomenon to be studied with the help of a predicate
(studying the effect of a parameter in function of another, or studying the effect of
such or such a model). The SYNTH program would find which simulations will satisfy the
predicate. However, for a first version (still being developed), it is better to ask the
user to identify the simulation to be compared. The SYNTH program thus verifies the
validity of the comparison, makes up the headings identifying the work done and makes
the comparisons.

* There are three oossible fields for comnarisons:

- inside one simulation,
- between specific simulation produced by a same model (same simulation program),
- between simulation produced by different models.

W th comparisons done inside the same simulation, it is the variation of an axis which
will provide the criterion for a comparison: it is the position on the axis which is stu-
died. Often, the comparison will deal with the repetitive axis, in other words, an axis

* which does not define the space of the simulation but which induces repetition of the stored
information: this is specifically the case with the models with several lasers (where a
laser" axis will store information on the di;ferent lasers) and the model including statis-

tics (where a "statistic" axis will store the different repetitions oi the simulation).



The comparisons of simulations produced by the same model permits the study of the effect
of parameter variation on a given model. For instance, it is possible to study the effect of
a parameter by choosing simulations that are distinguished from each other only by the diffe-
rent values given :o this parameter.

The comparison of simulations produced by different simulations brings out the impact of
the models. This type of comparison is very complex as the different models do not necessa-
rily use the same parameters. The SYNTM program must thus use equivalence tables between the
parameters of the di;ferent mode! to iudve the validity of a comparison and to make up a valid
heading.

The functions to be compared can either be vectorial (a simulation produces a curve) or
scalar Ca simulation produces a Point on a curve). The vectorial function can be used with
the three types of comparison. According to the case, the curves of the comparisons are thus
identified by the varying axis, by the distinguishing parameters, by the changing model. The
scalar function can be used only in comparisons with simulations produced by a same model.
Thus, the effect of a group of Parameters can be studied in terms of another. In this case,
the simulations providing the points of a curve are distinguished from one another by a group
of parameters A defining the horizontal axis of the comparison. The comparison thus involves

*several curves distinguished from one another by a group of parameters 3, group B does not
"" include any of the parameters of A.

The specification of the required type of comparison is done in two steps: first, by
indicating which function is to be compared and which are its selectors, second, by indicating

* the simulations involved in each comparison making up the series. A series is a group of
comparisons which have logical bonds and which make up a more or less exhaustive study of a
given phenomenon.

In the first step of the specification of a series of comparisons, the user must indicate
the identifier of the required function. Next, the user must indicate the name of the axis,
its type and the specification of the selected points for each of the axes on which the func-
tion depends. There are four possible types to characterize an axis and each type is shown

- by a letter (S, n, C or 4). The specification of the selected points is done by a list of
" point numbers, and a set of selection separated by commas (in fact, it is the same syntax of

the DESRES program, cf. section S.Z). This first step is ended when the user writes a semi-
colon instead of a name of axis. For instance:

*The S type indicates an axis used to select points of evaluation of the function to be
compared. This is the "by default" type, and the symbol S can be omitted. Thus, the func-
tion n POWEP is selected or all the points on the TAU axis evaluated at point I of axis
STAT and at point 71 of axis ETA Cwhat the SYNTH program writes is underlined):

PV?CTVW n POWER= $,1

ETA a S,71
TAU a

The G type corresponds of an axis giving many comparisons, that is providing comparisons
for each of the points selected on the axis. Thus, the following specification:

FUN4CTT O4 n POWEp

ETA v G,61,71
T1AU a

indicates that 2 comparisons of the function 0 POWER are needed, one for point 61 on the ETA
axis and another for point 71.

Type C corresponds to a comparison axis, that is, the impact of this axis on the function
to be compared. There can be only one comparison axis for a given function. For instance,
the specification: U

TM C (1,7,1)
ETA a 71
TAU *

indicates that the comparison contains the function 0 POWER seven times, once for each of the
points selected on the STAT axis.

Finally, type M shows that the user would like to compare the arithmetic mean of the func-
:ion rather than the function itself. When 4 qualifies an axis, it means that the arithmetic
mean of the function for the points selected on the axis must be evaluated. Thus, in the case
of

°o



- ETA 2 71
TAU *

the user must compare the average of the seven function 0 POWER selected on the STAr axis.

By analy:ing the specification of the first step, the SYNTH program is already able to
know some of the user's intentions and thus to determine which informations must be provided
at the second step. In other words, if a type C axis is already known, the SYNTH program
will automatically know that the comparison is done inside the same simulation and will ex-
pect only one simulation number per comparison. Moreover, if the specification of the points
selected determine a scalar function Ci.e. FUNCTION wIDTH STAT a M,C1,7) ETA = 71), the
SYNTH program will conclude that the user wants to study the impact of a group of parameters
on another group of parameters. In this case, the SYNTH program must ask the user to specify
a list of parameters. Each of the parameters on this list will be used one after the other
to define the points of the horizontal axis (axis x) which corresponds to the different
simulations that make up the curves to be compared. For instance, in the following case:

P.AAAMETP.S FOR AXIS X: TBPO, FARUSKA, INVFLNL

The program will produce three series of comparisons, one using the values of the TBRHO para-
meter to form axis x, another using the FARUSKA parameter and finally one using the IWFRVL
parameter.

The second major step for the definition of the work to be done comes when the series of
comparisons are specified. A series includes one or several comparisons making up a logical
whole, that is studying the same phenomenon. The SYNTH program produces a heading for each
series of comparisons, showing the changes of parameters, of models, or of points on the axes
for each of the involved simulations.

Depending on the kind of study, a comparison is made up of one or many simulations, and
each simulation is identified by a model and a simulation number (one or several blank spaces
separate the two elements). In order to avoid a repetition of the name of the model, the
SYNTH program lets the user define, at the beginning of a series of simulation, a model by
default.

To end a series of comparisons, the symbol period is used. At this moment, it is pos-
sible to redefine another series using the same function specification, or even to return
with another point at the level of function specification.

What happens after this identification by "model by default" depends on the type of
comparison that the user requires.

If the comparison deals with the same simulation, the program asks the user to indicate
-- the simulation used for each comparison. The following example illustrates a series of these

comparisons showing the variations produced by the STAT axis.

FUNCTION 0 POWER
C,C1,7)

ETA s 71
TAU *

MODEL BY DEFAULT: LR1CFS
b 11]LA Itill: 100
5MULATLON: 101

'" .* 7TU~IT: 102

MODEL S"==:
:.. ". rUNT ON :

'When the comparison studies the impact o4 certain parameters or of the model on a vecto-
rial function, the SYNTH program will ask the user to give the numbers (at least two) of the
simulations making up each comparison in the series. In the following example is defined a
series of two comparisons involving three simulations, then a series of one comparison invol-
ving three simulations of different models.

FUNCTION 0 POw!R

TAU

"Of ' BY DEF".': La1CTS
-.. U .,: 100,101,102



..!DEL BY DEFAULT: L.1CPS
, MULATIONg: 100,LRIPS S,LR1P4S 2

FUNC-TIO:

* Finally, when the comparison involves a scalar function, the SYNTH program asks the user,
' first, to indicate the simulations making up the curves, then to indicate which curves make
up the comparison (it is possible to define one curve only). The following example shows a
series of two comparisons involving three and two curves respectively.

FUNCTION: WIDTH (pulse width)
i -"" M,' ( , 7)
ETA ' 71

MODEL BY DEFAULT: LR1CFS
3iLULA.1iO N 5RM.G UP THE CURV
Ii: ]U0,LOU,4O
'': 103,104,10S
17: 106,107,108

"'.. : 109,110
TT: lll,llZFT: 111,11Z

'iVES MAKING UP THE COMPARISON

V7: 4,5

-.tEL BY' DEFAULT:
-UNLLOLN:

By and large, the SYNTH program functions by processing the series of comparisons one by
one. Syntactical verifications are done as the specifications are entered. When the defini-
tion of a series of comparison is completed, the program verifies the validity of what is
reauested. If there are no errors at this level, the program makes up the heading of the
series. The data needed for this operation comes on the one hand from the series specifica-
tion that defines the type of comparison requested and, on the other, from the DATSIM files
which provide the values of the simulations parameters to be compared. A specific heading
is given to each comparison in order to identify each plot. Finally, the comparisons are
' enerated, and the value of the functions to be compared comes either from the DATSIm files
fif it contains the needed information) or from the SIMRES files.

Figure 5.12 shows the heading of a series of comparisons, in which the impact of para-
meters IGVA, IGVB and IGVN on the vectorial function E-R-DR are studied. Figure S.13 shows
a comparison of this series. Figure S.14 shows the heading of a series of comparisons showing
the impact of parameter GIAO in terms of parameter SB on a scalar function. Figure 5.15 shows
a comparison of this series.

I
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famly statement

EIn -a:a:i--O- values

list Of value________
value

vau

U C.)Fortran
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-PPOGRAM DEFPARM 1.0
-HAPPY TO HELP YOU!
-LOAD U PAP.I!4YTERS OF A PREVIOUS SI.. ULATION ? (YES/NO)

-GIVE THE NUMBER OF THIS SIMULATION

-LOOKING FOR SIMULATION 312 WAIT A MOMENT PLEASE
-BE PATIENT I'M DOING MY BEST!
-ENTER PARAMETERS AND THEIR VALUES

Pr gram outputi • User's input

FIGURE S.2 - CREATION OF A BASE FROM PARAMETER VALUES OF A PREVIOUS SIMULATION

-POGRAM DEFPARM 1.0
-HAPPY TO HELP YOU!
-LOAD THE PARAMETERS CF A PREVIOUS SIMULATION ? (YES/NO)

-LOOKING FOR THE NUMBER OF THE NEXT SIMULATION
-WAIT A MOMENT PLEASE
-ENTER PAP.A4,%ETERS AND THEIR VALUES
)idimen- 1;
C" ideltaa , ideltab. ):; ( 1, 1 ),

),. > 0,0 );
>toto - ab
-TOTO - AB
-ERRCR .UMER: 12

-THE GIVEN PARAMETER IS UNKNOWN
I.E. WAS NOT FOUND IN THE LIST OF PARAMETERS USED IN PREVIOUS SIMULATION)e. : -PLEASE RETYPE LINE FROM THE BEGINNING
>slO a 12S.0 , 250.0, 37S.o
)thrha. a 4.Z36669, 9.7;;

- Program output
> User's input

FIGURE 5.3 - USER'S SPECIFICATION OF A FAMILY OF SIMULATIONS
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Si.# IMEN IDELTAA !DELTAB G1AO TBRHOA

649 1 1 1 1Z5.0 4.236669
65O 8.7
651 2SO.0 4.236669

*652 8.?

653 375.0 4.236669
654 8.7
6S5 0 0 12S.0 4.236669
656 8.7
657 250.0 4.236669
658 8.7
6S9 375.0 4.236669
660 8.7

>CmKRECTIONS (YES/NO) ?

-yes

-FOl. MODIFICATION ENTER NEW VALUE(S) OF PARA.ETER(S) LISTED
-";" 'MEANS NO MODIFICATION
-"." ~EANS END OF MODIFICATION

-NUMBER OF THE FIPST SIMULATION

-(IDELT.AA,IDELTAB)

-G1AO

s-m# IDIMN IDELTAA IDELTAB G1AO T3RHOA

* -"649 1 1 1 125.0 4.236669
650 8.7
651 250.0 4.236669
652 8.7
653 375.0 4.236669
654 8.7
655 2 2 125.0 4.236669
656 8.7
657 2So.0 4.236669
658 8.7
659 373.0 4.236669
660 8.7

),-CORRECTIONS (YES/4O) ?

FIGURE 5.4 -CORRECTION PHASE OF THE CEFPARZ4 PRCGPAN
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SDATA N4WtBR2A649,
IDIfEN1,IDLTMA21,IDELTABu1,G1AOSLZS.O.
TBROAa4.236669,

* S$DATA WfBMER8650,
IDInIENul,tDELTM.A~1,tDELrA3*1,G1AO*1ZS.0,
T3RHOA*S. 7,

SDA'rA .UMfBERx6Sl,
IDrMENaI, IDELTAA=1, IDELTABu1 ,GlAOxZS .'),
TBRHOA*4.Z36669,

SDATA NUMUERx'GSZ,
IDIMEN=1,IDELTM'LI,IDELTA3*1,GIAO-ZSQ.a,
T3RHOAw8.7,

SDATA NUHSERa6S3,
lDrHENUI, IDELTAAal, IDELTA3B1 ,G1AO:37S .0,

* T3RH0Ax4.Z36669,

SDA7A XUMERz6S4,
IDIHENaI, IDELTAA*1, IDELTABu1 ,GlACO375 .0,
TBRHOAs8. 7,

* S$DATA MUP13ERN65S,
IDIX.EN:1,IDELrAAUZ,IDELTA~eZ,GlAOaIZS.0,

STBRHOAs4.236669,
* .5

SDATA MUMBER2656.
IDI.fLENul,DELTM~uZ,IDELTABuZ,G1.1SAf,
TBRHOAs8. 7,

SDATA MUMER2657,
ID MNml rDELTAMzZ, IDELTADB'2,GlA0s2S0.0,
TBRHOA*4. 236669,

* $DATA NUMBER26S8,
* IDIMN*1, IDELTAAaZ, IDELTAB'Z,GlAon2S0 .0,

TBRHOAx8.7,

SDATA NUW13ER*6S9,
rDrimNaI, .DELTAAZ, IDELTAE32 ,G1A0237S.'),
TSRHOA4. 236669,

SDATA NUMER2660,
IDIHNI, IDELTMU=ZIDELTAB:2,G1AO=SS7.0,
T3RHOAwS. 7,

FIGURE S.S - AHELISTS PRODUCTS OF THE IEPAR~f PROGRAM

* PROGRAM: LR1CFS
S 14JLAToNs: 1-5, 7, 12

seL*-c: SLAT x TOUlS (ALL)
so ect TA (1, 71, 1nl)

eect xh (1, *, )

;STANDARD
PtT: PLOT 3D

sarr : STANDARD)
V=D : CONTOUR
S=r : in (END)

PUNCTTW-. 0 POWR
s*0ocvC? rLAT 2 TOUlS
soe"c ZWX- (1, 71, 10)

Sele~ EAU (S, -)
. Az:STANDAPD (STAT)
-P PLOT 2fl

SUM_ FIN (END)
FUNC.~N I

SIP4or~FT M: FIN
PROGM: P:N IGU"RE S.6 -PLOT SPECIrrCATION FOR THE DESPES MRGazi



DOUBLE LRSER SIMULPTION

NUMERO 626,.
LASER: A
PARAMETERS

111,741. 9109Z :'i10V-1
Pm z0.04prim-11:0.0.

CI sam-m. ci 1
GRA 1im. oleo a28~3

G1APCT s .LE.01. GISPCT a tEK.Qlo

TGFAa.4236M+. TW a1.68*1
[lOam a 0. Fqma0

WT a-oN~woSIGM 2 -. I E-00.
A a 01. TAB a0.I.

x 20.0*

mmPNA 0.0 mSPa 0..
0.0 E 'A 'LIE 0.0.TOESTRA a . 0;-1TIJM u.

SPSIU4A a.15.S01. . 21lNU a .12-Ga.
124ITnC a 0.0487. £N00N a 0..

taftE 2 Go0 ..STP x 0.

0-0u3. NATO a50.0
TMINVC = :ItW-0 1. W st0

TA 21 TAW 2.9*.

UW. [L2EV02 :1. .

.K a . x I,.



LMM RX 5ON 1.7 - G RF3O RAME 2

YtIRX 1.16IG 71 / 75 NO 626
YMIN 0.00 ENERGY ETA 35.5000 PRIEL

FIGURE S.8 -PLOT DRAWN BY PLOT' 3D FOP. A ZvARIABLE FUNCTION
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C 0 M P A R I SO

SERIE 95 (NUMBER 1)
VIM NORMiALIZATION

NUMER I GVA I m, IDGN

410. 1 . I1. 0.
380. 0. 0. 0.
584. 0. 0

:AER 1, SEB 21
PHIOA a .3141782E-01. LASER! a23472-1

PHIZA - )2 PHrZB x 0.0,
IBCA a1. IBCS x J,
131CA2 a 0, 13CB2 a 0,
CiA 2.632E-1)3, CIB w .88-01I,
GIAO z .7SE#611, GIBO z .Z7SE*03,
G1APCT .18E.01, GIBFCT z.lE*01,
IGVVCTA z 0, IGVFCTB 0,
T3R1{OA 8 .4236669E-.01, TBRHOB .4236669E-01,
imD -- o, IRANDB 0,
SrGNA 2 -.99E-40, SIGNB -.18-03,
IDELTAA x 1. IDELTAB 1
DWNA 0.0, Own! t 0.0,
GAMAA .18.01, GA?~eW z.1E#01,
SA Z lE11 SB a 0.0,
TBWVA * .5E*00, TBW! a S3E*00.
RXAPPAA a 0.0, RIAPPAB a 0.0,
TAUQA a.', i01, TAUOB .7E.02.,
T1N INVA 2 .1258-01, TlNINvB = zE-i
T2NINVA * .14236E-01, T2NINVB x .14286E-01,
PHISTDA 2 0.0, PHISTDB 2 0.0,
ISTPHIA 2 0, ISTPHIB =0,
CURVA a 0.0, CUR'!! a 0.0,
RIKPLONA a 0.0, RIPLOR! a 0.0,
rDISTRA 20, IDISTRB 0,
EPSILMA x .1E-01. EPSILNB a .1E-02,
T2ZN1NVC 2 .14236E-01, TAUSP =.48.01,
TAUOCT =.g8t01, WINDOW .218.02Z,
IDimiN a 3, KSAV8 64,
HSAVE 32, JSAVE Soo0,
JSTEP 24, HR *.17357E-01,

HS .6258-03, NA *32.
NAT 2S7, IN LR 21,

43RUNS - 1, IST *2

ISR a 2, rPV.NPSH x 0,
rL VE L x 1, BETAA a .474E-02,
BETAB 2 .228.02, FARUSL'A a .86088-01,
FARUSK3 3.3948860138.03, INPP.NLA 3 .11344E-01,
INPFRNLB 3 .1435949E.01, LGPHrOA a .37Z343!'*01,
LnPHTOB 2 -.3723432E#.01, IGVNEGA x 0.0,
rGVNIGB a 0.0, tGVPOSA a -1.

IGPO~!*-r, LGH( 2 .138639438.026,
LGPHSQ! a .13863943E9.02, INGIAS. .17778E-01,
rNGI3SQ 2 ISE8-04, IWVGIAO a.1333331900,
1,VG13O a .3636E-02, G1AOSQ z .S625E*02,
GlBOSQ .7S6258.05, rNvc1A 2 .1582278481E*04,
INVC1S x .IZSE+02, RCGIAO a .2738613E*01,
RCG1BO 3 .18S83124E*102 AKAPPAA .617067006A8.04,
AICAPPAB 2 .48748294E.02, TALIRA x .713489E*00,
TAURB a .19459E-01, TAUSA a .322756009E.03,

4TAUS! 2 .1772672.00, GLRtA 2 .85088-01.
GLRB 2 .384886013Eo03, ALPHAA 2 .23E400,
ALPHA! 2 .91666678.01l.

* FIGURE S.12 -HEADING OF A SERIES OF COMPARISONS IN WHICH 'IHE IMPACT OF
PARAHETERS rOvA. trw! JND IGV N ON THE VECTORIAL FUNCTION
E*R.DR ARE STUDIED
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7. G1AO -VS -U B.COMcA.RISON 97)

U A) CONSTAN'T PARAM~ETERS

PARAMETER ALEPARqAMETER VALUE

LASEUA = LASERB 1
PHIOA =3.1417817 PFIIOB 2 .1417817
PH12A =0.0 PHrZB '1(.0
IICA = 0 ICE 0
IBCA2 a 13C322 0
CiA = .08 cis x .000632
I GVA : 1 IGVB : 1
GIBO =6.25 G1AFCT Z 1.0
GlBFCT 8 . IGVPCTA. 2 0

I~'CB a0 TBRHOA x 4.236669
TBRMOB 4.Z36669 IRANDA 0~
IRANDS 0 SIGNA -1.0
SrGNB Z 1.0 OWNA 0.0
DWNB 0.0 GA,%ftAA 1.0
GA?Q%3AE 1.0 SA S0.0
TBWA zS TBWB - .
RKAPPAA 20.0 RICAPPAB 0.0
TAUOA -7.0 TAUQE 7.0
TlXINVA 2 01S TININVB .012S
TZNINVA =0142857 T2NrNvB .01428S7
PHISTDA 2 1.0 PHISTDB z 0.0
rSTPHIA =0 ISTPHIB 2 0
CURVA -0.0 CURVB 0.0
RKPLONA 20.0 RIPLONB = 0.0
IDISTRA =:0 rDIsTRB z o
EPSILNA z.001 EPSILXB = 1.0
T2NrNvc z .0142857 IDGN 2 0
TAUSE 4.0 TACYOCT 9.0.
WINDOW 21.0 IDIMEN :3
KSAVE 64 MSAVE 32
JSAVE :300 JSTEP 24

HR Z.017SS7142SS7 HS z.0006ZS
NA 32 NAT =57
INLR I 1 NRUNS I
1ST 4 tSR
rADRMO S0 IPU?WfSH x 0
ILEVEL I

3) ?!MAETIR VYIjNgON A CURVE

GlAG

1. 225.0
Z. 27S.0

3. 32S.0

C) ?6MjLVARAYXG 3ETWEEN CURVES

CURVE Sa

1 1.0 FIGURE S.14
2 2.0 HEADING OF A SERIES OF
3 3.0 COMPARISONS SHOWING THE

IMPACT OF PARAMETER
GIAO IN TERMS OF PARA-
M4ETER SE ON A SCALAR

* ) jj-jIqU§-sED IN CURvp§ FUNCT ION

CURVE SIMULATIONS

1 498 S0ol 504
2 345 351 3S7
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VI - THE LASER ?qOGUIS

Suen though :he Zaasr simuavion programe do not in :hemueve~ e form the core or the
basis of the system presented here, rhey remain neverths:e ita fundamental votivation.
It should be noted that the different softwares and orograms making up the system are general
enough to process several different nroblems. The SIMRES for instance can process any pro-
gram using numerical integration for result calculations. Therefore, it seemed necessary to
devote a whole chapter to discuss the nroduction and resolution problems faced in the laser
simulation programs.

It will not be possible to Rive here a detailed explanation of the ohvsics and the
numerical techniques used to solve the diverse differential equations in these programs.
These two aspects will only be touched un descriptively in order to place the programs in
their proper context.

This chapoter is divided in four oarts:

t I - the first nart is a summary description of the orograms with an overview of their
particular techniques,

2 - the second part deals with the general characteristics of the programs: documenta-
tion, modularity, etc.,

3 - the third discusses the nroblems of validity and reliability of the programs,

4 - the last part shows how the problems Created by the constraints of memory were
resolved and how the oerformance of the programs was increased.

6.1 DESCRIPTION 09 THE LASER SIMLATION PROGRAMfS

Even though each program is essentially different from the other, all the programs use
similar numerical techniques to solve the nonlinear propagation equations (Maxwell) and the
atomic equations (3loch). These eouations are solved simultaneously by a dynamic predictor/
corrector algorithm: the predictor used generally is the explicit method of the middle point
(Euler's modified formula), the corrector used is the trapezoid.

Moreover, nonlinearly defined axes (transverse axes, temporal axes) are used in order to
increase the efficiency of the nredictor/correcror algorithm. These axes determine a non-
uniform multi-dimensional meshing that show, around the focal point along the prouagation
axis, the interesting phenomena of' the beam. Depending on the choice and the nature of the
phenomena studied, this non-uniform meshing can be calculated statistically either at the
beginning of the simulation or redefined locally as the simulation is in progress (dynamic
adaptation) to check the rapid changes in self-focusing.

The names of the laser simulation programs follow these conventions:

a - the prefix LR means LaseR;

b - the number following the prefix indicates the number of lasers used in the simulation;

c - the letter immediately following this number shows- the implication of radial symmetry
(C for 2ylinder, thus one transverse axis) or its absence (P for Parallelepiced, thus
two transverse axes, x and y);

d - the letters or numbers that follow denote the orincinal characteristics of the program.

* "Also, the axes used in the different programs are designated as follows:

- longitudinal axis of the cylinder or parallelepiped: axis z;

- radial kwsmtry axis of the cylinder: axis r;

- Cartesian transverse axes of the parallelepiped: axis x and axis y;

- temporal axis: axis t;

- axis of frequencies: axis w.

Following is the description of the laser simulation 2rograms already integrated in the
system and using the SIM£ES software to produce the simulation results.

1) The LRlCFS nrogram (P for frecuency and S for statistics): the simulation is defined by
the :, r, t, w axes. The moder is based on the szilar wave equation coupled to the two-leve!
resonant atomic system without degeneracy. This program offers the following options:



- the possibility of inclusion of the transverse effects (activation of the r axis of
the cylinder): this shows the increase in the inhomogeneities and the importance of
the nonlinear disoersion and the nonlinear absorption;

- the possibility oi inclusion of the quantum fluctuations in the medium initiation for
sup*erfluorescence evolution (activation of statistics calculations);

- possibility of inclusion of the "extended'Doupler effects (activation of the W axis
associated with the atomic system).

It is also Dossible to include in this simulation all these possibilities at the same
time.

2) The LRlPS program (S for statistics): the simulation is defined by the :, x, y, t axes.
This model is essentially the Tame as the one used in LR1CFS without the inclusion of the
extended Doppler effects into the program. The following characteristics should be noted
however:

- - the transverse axes x and y are only defined for the positive quadrant: i.e., the
x axis is defined from 0.0 to xmax and the y axis is defined from 0.0 to ymax;

- the transverse effects on one axis can be activated without necessarily activating
the transverse effects on the other axis;

- the maximal delimiter chosen on the x axis (xmax) can be different from the maximal
delimiter (ymax) on the y axis: this allows for a larger choice of situations.

. 3) The LRlP4S nrog-ram (S for statistics and 4 to indicate that the transverse axes cover
the four quadranis): the simulltion is defined by the :, x, y and t axes. This model is
identical to the one used in the LR1PS program except for the two following points:

- the transverse effects cannot be removed: i.e., the x axis is necessarily defined
from -xmax to xmax and the y axis is defined from -ymax to ymax;

- the minimal and maximal delimiters of the two axes are equal to one another, i.e.,
-xmax a -Vmax and xmax - ymax.

4) In the LR12C program, the s4mulation is defined by the z, r, t axes. This model is
based on two scalar equations of the aronagation movement defined by Z intense ultra-wave
laser beams propagating simultaneously through a gas of three-level atoms. This model shows
the interaction between the two beams and how they influence each other. This program allows
for the possibility of inclusion of the transverse effects on the simulation.

The following programs are not yet integrated to the system but will soon be added to
Sthe four programs described above.

3) The LRZCFS program (F for frequency and S for statistics): the simulation is defined
by the z, r, t, a axes. The model used here is esseatially the same as the one described in
LRZC except that, as in the LRlCFS program, it offers the following options:

- the possibility of including transverse effects;

- the possibility of including statistical calculation (quantum fluctuations);

- the possibility of including the extended Doppler effects.

When this program will be integrated to the rest of the system, it will completely
replace the LR2C program.

6) The LRlCC program (C for chemistry): this simulation is defined by the z, r, t axes.
* The model is similar to that uTed in the L.RICFS program but with a more'refined atomic confi-
*guration system to allow for a six of ten levels of absorption. This model thus permits the

study of the effects of coherent orooagation in the multi-level atomic configuration such as
Suropium.

7) The LRIPH program (H for hydrodynamic): the simulation is defined by the :, x, y axes.
This model is based on a hydrodynamic formulation. In order to avoid the oscillatory behavior
resulting from the decomposition of the electrical field into its real and imaginary parts, it
is necessary to describe the field by using the modulus and the phase, or equivalently, by
using the field energy and the transverse gradient of its phase. The evolution of the beam
can thus be seen as a flowing fluid whose density is proportional to the field energy and

*-. whose velocity is proportional to the gradient of the phase. This description leads to a
generalIzed Vavier-Staockes equation of motion for a compressible fluid subjected to an internal
potential which depends solely and nonlinearly on fluid density and its derivatives.



8) The LRlCP program (P for plasma): the simulation is defined by the :, r axes. This is
based on a simplified LRICFS program: the transient effect is eliminated and the temporal
variation is disregarded, what is calculated here is the asymptotic effects and adiabatic
approximation response of the atomic field (off-resonance). The nonlinear field is charac-
teri:ed by an analytical susceptibility where the light-matter interaction is instantaneous
(unlike the model used by the LRICFS program). This nonlinearity is cubic in nature: thus
the Xerr effect. However, this effect can be corrected and limited by a saturation or even
by a nonlinear exponentiality. The laser can therefore describe the evolution of the elec-
tromagnetic field in a plasma medium governed by these kinds of nonlinearities.

9) The LU.PP program (P for plasma): the simulation is defined by the z, x and v axes.
It is essentially the same mod l as the one described in 8) but without the radial simearm/.

10) The LRICT program (T for transistor): the simulation is defined by the =, r and ts axes.
The model used here is based oE the following approach: when two waves going in opposite
directions (a forward wave and a backward wave) interact coherently with each other and with
a medium resonant to the pulse frequency, this pulse adapts itself longitudinally and trans-
versely during the simulation. The dynamic cross-coupling of these two waves appears explici-
tely in a two-mode equation analogous to the traditional one-mode 3loch equation describing
the two-level absorption system. The variation of phase and the amplitude of the linear field
polarized in the transverse direction are described by two wave equations, one for each mode:
forward travelling propagation and backward travelling propagation. The equations derive from
the Maxwell equation comprising the transverse and transient ohase variations. s denotes the
spatial frequency harmonies associated with the standing wave nature of the field.

The algorithm used to solve these equations is a generalization of Moretti's scheme for
the integration of the Buler equation oi compressible flow. It is an explicit algorithm which
demands a simultaneous integration along the t axis for both waves and which also takes into
consideration the directional derivations to check the mutual influence of the two waves while
respecting the law of forbidden signals. The program thus allows a unified simulation of the
soliton collision, of the two-wave superfluorescence and of the optical instability phenomena
in a nonlinear Fabry Perot cavity.

11) The LR1CI program (I for implicit): the simulation is defined by the :, r and t axes.
The model used here is similar-to those used for the LRlCFS and the LRICC programs, however
this model uses an implicit efficient algorithm with dynamically adapting grids: to achieve
a greater stability and a greater exactitude, in many cases, the algorithm is obtained by
expressing the variable on the left side of a given equation in terms of an integral on the
variables on the right side of that equation. The field equation solution is determined in
.terms of average quantities that varies less rapidly than the original variables. Every mesh

.-' point is determined with the associate neighboring points: the resulting triadiagonal Woch
matrix is solved by recurrence method.

The program offers the possibility of studying the influence of diffraction, of iaslty
variation and of the inertial response in a multi-level system for a large number of experi-

. mental parameters.

" 6.2 GE-,4ERAL CHARACTERISTICS OF TF.E LASER SIMULATION PROGRAMS

Several problems arise from the frequent modifications, from the handling by different
users and from the transportation and implantation of these programs into other computers.
These problems can be summarized as follows:

- general comprehension of the programs;

* " - detailed comprehension of the code;

S- ease of program modification;

- transportability of the programs.

In order to answer all these requirements, the programs must adhere to certain basic
criteria which make their manipulation and maintenance easier; these are:

- the documentation of the programs;

- the use of standard FORTRAN;

- the modularity of the programs.

It is important to point out here that all the laser simulation programs as well as the
softwares presented here adhere to these requirements.

Ii
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6.2.1 DOCUMENTATION

Following is presented the complete description of these programs when dealing with the
above mentioned requirements of general comprehension.

- the principal program includes a summary description of the model used and a complete
description of its algorithm;

- all the physical parameters (program data) are adequately reported;

- each subroutine of the program has a detailed description of its role in the program
and, if need be, of its algorithm;

- the code of the principal program is reported in its smallest detail;

- all the global variables of the program (i.e. variables in the commons) and specific
*-. to the subroutines, as well as their parameters, are explicitely described as per their

usage.

a-'o. ot only is a proper and extensive documentation a time-saving device but it also allows

a more detailed analysis of the program at hand.

6.2.2 TRANSPORTABILITY

The laser simulation programs can be installed on different kinds of computers, therefore
* they must be easily transportable. As a general rule, and whenever possible and feasible,

these programs are coded in standard Fortran (ANSI).

Thus all the programs use identifiers (i.e. names of subroutines, variables, parameters,
etc.) with at the most six alphanumeric characters: in fact, most Fortran programs installed
in computers other than CDC or CRAY do not permit more than the maximum six characters allowed
by the standard Fortran. Nevertheless, some non-standard statements, such as GOTO, the PROGRAM
declaration, the indices in form of expression, etc., can also be used because most Fortran
language processor accept these statements.

It is worth noting that the use of s:andard statements was promoted by the criterion of
majority. The only exception to this is the BUFFER IN and BUFFER OUT used for pagination done
for efficiency. More information about this will be given in section 6.4.

6.2.3 MODULARITY

The first advantage of modularity is the simplicity and clarity it brings to the program;
that is: in the laser simulation programs, a subroutine performs only one precise task. For
example: the C1DTAU subroutine of the LR1CFS program deals with the calculations of the tem-
poral axis and of its derivatives. The second advantage of modularity resides in the ease of
introducing additions, modification or corrections to the program. In fact, when a program has
been cut into simple functional and independent modules, its model can be refined (thus a new
code) without upsetting all its structure. Moreover, any modification to the program will
remain locali:ed (i.e. modifying a numerical integration algorithm for a function) and its
effects will be better understood; in other words, the risks of unexpected errors, produced

"*i by these modifications, will be considerably diminished.

Following is the general diagram of the LR1CFS program (figures 6.2.1, 6.Z.2 and 6.2.3).

* 6.3 MANAGEMENT CONTR.OL AND VALIDITY OF THE RESULTS

Two interdependent problems result from the relatively frequent modification to the laser
simulation programs, whether these modifications are for the improvement of the performance or
for refining the models at hand. These oroblems are:

- the minimization of errors due to modifications to the program;

* - verification of the validity of the results.

5.3.1 HA.DLI'G ND ANAGTVNG THE PROGRAMS

All the laser s.mulation proCrams are controlled by the C3C UPDATE program which products
* program libraries. Thus it is possible to ketp a complete inventory of the programs and toretrieve anterior versions as each new modification to the programs generates a new version.

* This method offers the advantage of:

6i



- controlling the results: one is certain that a specific result was produced by a
precise version of the program and the relevance of this result is verified in its
production context;

- controlling all the modifications effected to the program over a period of time.
It is thus possible to have a detailed verification of the code if :here is a need
to check the compatibility of certain results with others, previously produced.

Another advantage resides in the fact that all the laser simulation programs are centra-
lited on the same file. Moreover, because it is necessary to use the UPDATE program to make
any modification or addition to these programs, their manipulation must be very precise. It
follows that the errors (accidental destruction of files, presentation of a wrong program),
and the proliferation of more or less similar nrograms (i.e. different versions) stored on
several different files are kept to a minimum, this in spite of the fact that a programmer
always tends to create working space by using several files.

Given its facility and its great security, this practice has encompassed all the programs
and software presented in this paper.

6.3.2 RELIABILITY OF THE PROGRAS AND VALIDITY OF THE qESULTS

Validity of the results is one of the trickiest problems to deal with. Usually, a se-
mantically faulty program will blow up, sometimes however the program will run till the end
and produces completely wrong results. A program using integration techniques with slow
evolving numerical values may be quite resistant to such minor errors as the use of a wrong
constant in an equation or a wrong sign. The problem is then to recognize the wrong results.

The surest way of verifying the validity of the results is to test the program with pre-
viously obtained results known as valid. There is the possibility that the results obtained
in the new version may not be strictly identical to the previous results (results are said to
1e identical when, for a given function and a given point, all the significant numbers are
identical) however these may not be necessarily wrong. indeed, if any modification to the
program dealt with the numerical algorithm, or even with the order of certain calculations,

2,- the results will be slightly different (for example, only the first significant n numbers in
the two versions agree). It is thus necessary to establish a percentage below which the
results may be considered as valid and above which these can be seen as doubtful.

Moreover, one test only may be quite inadequate when dealing specifically with the relia-

bility of the programs. With the introduction of modifications to the statistics of the LRlCFS
program for instance, it will be necessary to determine whether the new version will function
with or without the transverse effects, with or without frequencies. A minimum of four tests
will be necessary in order to ascertain the proper running of the program. According to the
importance of the modifications carried out, it is important to choose the most exhaustive
set of tests to cover all the possible effects of the modifications on the mcdel used in the
program. The validity of the results will thus be verified in all cases (i.e. for any set of
parameters).

This testing procedure with the mechanism of using other versions in program libraries

establishes a consistency between the results of the different versions of the same program.

6.4 CONSTRAInTS OF THE LASER SIMULATION PROGRAMS

Like many other programs, those of laser simulation fall under twe major constraints:

- the memory available on a computer, and

- the efficiency of the programs.

6.4.1 vEMORY

Two main factors must be dealt withfirst:

- the rather small memory of the computer these programs run on: for example, depending
on the equipment, the memory of the CY3ER computers series 170 may vary between O0OK
and 400K8 words;

- the variable size of the programs are determined by the number of words sampled on the
axes that define the simulation.

* One of the smallest programs, the LR1CvS, will be used to show the importance of these
i two factors. This program depends on the following four axes:



- the axis: longitudinal axis of the cylinder

- the r axis: radial axis (of symmetry) of the cylinder

- the t axis: temporal axis

- the w axis: frequency axis.

Let us call E the electromagnetic field and DE the field derivative in connection to
* these two quantities depend explicitelv on the :, r and t axes. For the purpose of this

discussion, the w axis will not be used. Moreover, if L is the current plane associated with
* the : axis and i is that associated with the r axis, and if k is the current point associated

wit' the t axis; when the used predictor is considered (modified aid-point method) then:
E(L,i,k) 2 E(L-Z.i,k) - (lz/Z) x (DE(L-l,i,k) # DE(L,ik)); as can be seen, the three planes
L-Z, L-l, L of E and the two planes L-1 and L of DE must be kept. It should be noted that the
quantities of 2 and DE are complex (i.e. one word must be counted for the real part and one
word for the imaginary part).

With these informations, the size of the program can be assessed. Let us consider the

* following three cases:

a) 32 points on the r axis and 64 points on the t axis;

b) 64 points on the r axis and 128 points on the t axis;

* c) 64 points on the r axis and 192 points on the t axis.

The code and other variable will occupy a total of SCK 8 words.

Following are the calculations to find out the size of the programs:

a) required memory for E and DE: (3-Z)xZx3Zx64 - SOK 8 words; total memory required:
SOKSSOKS a 120K$ words;

b) required memory for E and DE: (3$Z)x2x64xlZ8 240K8 words; total memory required:
SOK$V240KS a 310K3 words;

c) required memory for E and DE: (3+Z)xZx54x192 • 360K8 words; total memory required:
SOK*360K$ a 450K8 words.

Depending on the number of points on the axes, it can be noted that the size of the very
same program may fluctuate surprisingly. With facilities that can deal only with 300K 8 to
40OKS words, like in cases b and c, there will be serious problems to face. Moreover, certain
programs without the radial symmetry hypothesis, like the LRlPS, require a far greater memory.
In the LR1PS program, where the quantities of E and DE depend explicltely on the :, x, y and
the t axes, with 32 points on each of the transverse axes (x and y) and 64 points on the t
axis, there is a need for 240OK 8 words (i.e. C3-2)xZx3Zx3Zx64). This is indeed a major problem
for most installations.

Nevertheless, the laser simulation programs have some common characteristics:

- the size of the programs in a function of the quantities of E and DE;

- the size needed by the programs in concentrated in two quantities E and DE (rfrom So%

to 98S of the total size, depending on the program);

- the numerical integration uses a purely sequential algorithm in all the programs
(i.e. inner loops structures).

One simple and direct way of solving the vroblem of memory is to use the computer disks
to compensate the central memory; these disks have a great capacity to store information.
Thus, as the calculations of the E and DE quantities proceed by successive iterations on the

* planes (z axis), the values of the quantities of E and DE, for a given plaza are stored on a
disk (writing operation), when these values are needed for prediction or corrections calcula-
tions of a given point of the r axis at given point on the t axis, all that is needed is to
retrieve them from the disk (reading operation): this procedure is called pagination.

More precisely, the planes L-Z, L-1 and L of E and the planes L-1 and L of DE will be
associated to five binary files sequentially manipulated by the Fortran statements 3UFFER :N
and 3UFFER OUT (writing and reading). What remains now is to define the buffers associated

SO to the five files and to manipulate the values these deal with.

At this point, there is a need to distinguish two categories of programs:



'- where yj jth line on the matrix
:j '1 Yn : total number of points on x axis

* - - : total number of points on t axis
, i "n jlj x;: ith point on x axis

tk: kth point on t axis
i tk I i • real part oi E

'I Ei: imaginary part of S

The control oi this buffer is similar to the one described in 1) but there is no need
here to manipulate the sections of the x axis as all the line fits in the buffer. However,
to control the three lines of the buffer, it is necessary to define the supplementary pointers.
For the same reasons, the buffer associated to the files holding the values of DE on the L-1
plane will have a similar structure but it will have only the two lines y,_1 and y,. All the
other buffers for E and DE will control only one y line at a time.

As in 1), the pointers on the files are used to go from plane to plane, yet the solution
here is not as versatile. The main problem here is the great size of the buffers. In fact,
for 32 points on the x axis and 64 ooints on the t axis, the size of the buffer controlling
the three lines will be of 3x2x32x64P 2 30K words. Keeping in mind the fact that there are
several buffers, and considering the memory needed by the code and the other variables (near-
ly 70K 8 words for the LRIPS program), there will be 160K words for LRlPS. By changing the
number of points on the axis, it will be easy to reach the 300K 3 words of the computers used
here.

Finally, it is necessary to note that in the two solutions presented here, only four
buffers are needed instead of five, even though there are five files to control. In fact,

* as there is never any need for the values of E on the L-Z plane and for the L-1 plane simul-
. taneously (the L-2 plane is used for prediction and the L-1 for correction). It is possible

to use the same buffer to control the two files associated to these planes for the values of E.

6.4.Z EFFICIENCY

The pagination of the laser simulation programs nay be the first source of inefficiency.
In fact, it is slower to read or write a word on a disk than to accede to an address in core
memory (primary storage). In order for the pagination not to affect the performance of the
program to a great extent, the following rules have been adopted:

- using buffers large enough to minimize the access to the disk;

- using the statements BUFFER IN and BUFFER OUT to read and write the buffers on file,
these statements are three times faster than equivalent binary statements READ and
WRITE;

- - using pointers for the control of files and buffers in order to avoid unnecessary
manipulations (displacements cf the values in the buffers, transfer of values from
one file to another, etc.);

* - non-usage of auxilary panels for calculations (these will be done directly in the
buffers) in order to avoid supplementary transfers.

Beside pagination, other points dealing with the efficiency of the programs must be
checked:

..given the inner Loops structure of this kind of programs, it is necessary t3 avoid
the transfer of variables as parameters in the subroutines called for by the inner
loops. For example, each variable transferred in parameter in the ClDRVE (or C1DRVP)
subroutine of the LR1CPS program will increase the total running time of the program
by 0.5%, and if this subroutine has 10 variables transferred in parameters, the running

-. - time of the program will be increased by St: this is quite significant.

It is necessary to minimize the number of divisions and multiplications in the equation
used in the subroutines of the inner loops. This can be done, when possible, by
Linking all the constant terms for each point of the same axis and by storing the
result in a panel subject to this axis. In that way, it will be possible to replace

- many multiplications and divisions by one multiplication and one address calculation
(access to the element in the panel).

For example, the running time of the L11CPS program without storing the pagination
mechanism goes from 300 seconds (on a CYBER 173) to 330 seconds but with :he storing of
the pagination mechanism, the gain is of 30%.

a.



*-lI Y 1j- dwhere yj: jth line on the matrix
n : total number of points on x axis
p . total number of points on t axis717"TI 1 x I xnXi ith point on Xaxis
t.k k:h point on t axis

11 It , 4E: imaginary part of E

.he control of this buffer is similar to the one described in 1) but there is no need
here to manipulate the sections of the x axis as all the line fits in the buffer. However,
to control the three lines of the buffer, it is necessary to define the supplementary pointers.
For the same reasons, the buffer associated to the files holding the values of DE on the L-1
plane will have a similar structure but it will have only- the two lines y. and y Al the
other buffers for E and DE will control only one yj line at a time. j-a

As in 1), the pointers on the files are used to go from plane to plane, yet the solution
here is not as versatile. The main problem here is the great si:e of the buffers. In fact,
for 32 points on the x axis and 64 ooints on the t axis, the size of the buffer controlling
the three lines will be of 3xZx3Zx64 a 30KS words. Keeping in mind the fact that there are
several buffers, and considering the memory needed by the code and the other variables (near-
ly 70K$ words for the LRlPS program). there will be 160KS words for LRlPS. By changing the
number of points on the axis, it will be easy to reach the 300K3 words of the computers used
here.

Finally, it is necessary to note that in the two solutions presented here, only four
buffers are needed instead of five, even though there are five files to control. In fact,
as there is never any need for the values of E on the L-Z plane and for the L-1 plane simul-

'. taneously (the L-2 plane is used for prediction and the L-1 for correction). It is possible
*to use the same buffer to control the two files associated to these planes for the values of E.

6.4.2 EFFICIENCY

The pagination of the laser simulation programs may be the first source of inefficiency.
In fact, it is slower to read or write a word on a disk than to accede to an address in core
memory (primary storage). In order for the pagination not to affect the performance of the

.program :o a great extent, the following rules have been adopted:

- using buffers large enough to minimize the access to the disk;

- using the statements BUFFER IN and BUFFER OUT to read and write the buffers on file,
these statements are three times faster than equivalent binary statements READ and
WRITE;

- using pointers for the control of files and buffers in order to avoid unnecessary
manipulations (displacements of the values in the buffers, transfer of values from
one file to another, etc.);
non-usage of auxilary panels for calculations (these will be done directly in the
buffers) in order to avoid supplementary transfers.

Beside pagination, other points dealing with the efficiency of the programs must be
* "checked:

--given the inner loops structure of this kind of programs, it is necessary to avoid
the transfer of variables as parameters in the subroutines called for by the inner

* loops. For example, each variable transferred in parameter in the C1DRVi (or CXDRVP)
subroutine of the LR1CPS program will increase the total running time of the program
by 0.51, and if this subroutine has 10 variables transferred in parameters, the running
time of the program will be increased by Si: this is quite significant.

It is necessary to minimize the number of divisions and multiplications in the equation
used in the subroutines of the inner loops. This can be done, when possible, by
linking all the constant terms for each point of the same axis and by storing the
result in a panel subject to this axis. In that way, it will be possible to replace
many multiplications and divisions by one M.ultiplication and one address calculation
(access to the element in the panel).

For example, the running time of the LRICFS program without storing the pagination
mechanism goes from 500 seconds (on a CYBER 173) to 330 seconds but with the storing of
the pagination mechanism, the gain is of 301.
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Terms used in the diagrams

eta: longitudinal axis of the cylinder
rho: transverse axis of the cylinder (symmetry axis)
tau: temporal axis t
dwn: frequency axis w (associated to the material)
material: polarization P (complex quantity) and energy W
E : electromagnetic field (complex quantity)
DE : field derivation in terms of eta (complex quantity)
L Lth plane on the eta axis
i ith point on the rho axis
k : kth point on the tau axis
Euler formula: E(L,i,k) E(L-l,i,k) zXDE(L-l,i,k)
Modified Euler formula: E(L,ik) E(L-Z,i,k) (zXZ)XDE(L-l,i,k)
Trapezoid method: E(L,i,k) ECL-l,ik) C:/s)X(DE(L,i,k)DE(L-l,i,k)
PHI0, PHI2: initial tilting angles used in material calculation
Statistics: indicate that depending on certain distributions, the PHIG and PHIZ angles

will be randomly generated

Key to figures

"'"•' :" sub-routine Contents
: loop on the number of laser simulations; (sta)

-- ----- : loop on the eta axis

----------- : loop on the rho axis

_____ : loop on the tau axis

.l........... oop on the dwa axis

The loops on the sta, rho and dwn axes are optional, i.e. it depends on the activation of
certain effects in the simulation.

FIGU.E 6.2.1 - GENERAL DIAGRAK OF TFE C1IUVW SUB-ROUTINE

' Calculation of the initial values of the material
* (only the two principal cases are presented here)
1 1. Case with non-activated statistical calculations

Step 1. (only at bootstrapping mode or for simulation by
* ' superfluorescence, if not, go to step Z).

• *calculation of a point of the material*
* 'from the PHIO and PHI2 angles *

" Step Z ........................
." , .material initialization.

'2. Case with activated statistical calculations
• Step 1. ClPHST* * *****

*calculations of angles PHr0 and PHr2 from'
* *certain distribution specified by the

*program parameters'

*' Step 2. *
*calculation of a point of the material*
*from the PHIO and PH12 angles

S Stoep 3 ........................
. .material initialization.
..........................



• FIGURE 6.2.2 - GENERAL DIAGRAM OF THE C:INTG SUB-ROUTINE

*i .material predictionon the TAU axis.
* .by Euler's modified !ormula; !. ...........: ...........................

*step 2. C 0 RVP

S~p3.........................................

Scomputation of the material derivations
* . in terms of axis TAU

i : .TAU axis by the trapezoid method
• ... .... .... ....ee e e e . e... ... e......

Stp 4. ClSUMP
cr ineration of t he polarzation P

" if the frequencies are active
• .- 0 **ooooooooe~oo• oooooooooooe.oo

* If:he first plane is ETA, go to stev? .

* " Se~p 3. CIDRVE .. . . .. .. . .
** 5.1 diffraction computations (if transverse effects are active)*

* S.2 computation of DE using the gain and the diffraction

Step 6. Correction of the field on the ETA axis by the trapezoid method

" " eStep 7. ClDRVE *0.4S*.4....*t*..*...e000*. ...... °" .......... .....
" 7.1 diffraction comoutations with the corrected values of

field E (if transverse effects are active)
• " 7.2 computation of DE using the gain and the diffraction "

Step S. ClDRVP *S0*S0°SS°'''°°''°''°'°°''*°'°'''°'°''°''''•°°''°'°"

......* .o.......... ....e.. .... .... .... .. .... ....

* . computation of the material derivations in
• . ~erms of the TAU axis using the corrected values
"" . of field E

.......... e.........................................

* Stev 9. Snergy comvutation for the kth ioint of the TAU! axis
* 0 t t t

*009005000o.5000000055q005***000****** °***00**5



H FIGURE 6.2.3 (cont'd) H

Step 10. ClCPLI ** * II
* this sub-routine deals with the initiali:ation of field E
* and of its derivative DE on the first ETA plane.

* 10.1 --------------------------------------------------------

o initialization of field E; if in propagation I

9made, can depend on a series of Gaussian pulses. I

*II
-- - - - - - - - - - - - - - - - - - - - - - - - - - I

* Ii , :10.2.1 ClIUVW (see figure 6.Z.1)II 9 I

I * :10.2.2 C1INTG (calculation of DE for the first ETA ' II
H . plane: see figure 6.Z.2) , *

* I

I II

step 11. C1CPLZ *. . .. ..
I * this sub-routine deals with the calculations of field E •
I * and its derivation DE on the second ETA plane. *

11.1----------------------------------------------------- 
i

i * :1 prediction of field E by Euler's formula. :

-------- -------------------------------

* 11.2 --------- -----------------------------------------

H :11.Z.1 ClIU1tW (see figure 6.2.2) '

I * 11.2.2 ClINTG (comput;tion of DE for the second *
II. # ETA alane and correction of S for that

ii * plane: see figure 6.2.2) •

IIStep 12. CCP----------------------------------------------------------------------

I * this sub-routine calculates the evolution of field E and it

* of the material along the propagation axis of the cylinder.
iH . - "-- -- - - -- - - -- - -

I! * 12.1 CIPRDF ** ............ .. **.........
,I ' "1 prediction of field.E by the ? b
I * Hmodified Euler's formula. H

II s __.___________eeiure__._.__ * ,
II " •

II 12i.2 cirUVW (see figure 6.2.1) H
12.3 C1INTG (comnutation of DE and of the material, *

H * €' correction of E and of the material: *
II see fiure 6.1.

I121.4 Production of the results (if the ETA plane has *.

II * ' been selected by the program) *

* I~ 1Z.4.1 CIIET .. 99*......*** H
* Is * calculation of the energy " •

%integrals on the TAU axis
I* * *..*.*******°*** *****•ee~eee L

-II 91 I IC

II .1: 12.4.2 C1FETn99
calculation ot the transverse :.ux.

I 9' *II

ii "*12.A.3 C1OPWR 9999999999999999999999 .... 9999999 "9 II
It * i calculation of the out-uj oulsei ' • II
II "I I" t

II ---... ............... . *.. ............*.. ........ .. . II
,--

r, I 99999999*99999999999*9999999999999



FIGURE 5..3 - GENERAL DIAGIArI OF THE LRlCFS ?ROGRAM

Step 1. Reading of datis (i.e. numher of the simulation, optional selec:ors on the
* Ii functions, simulation parameters).

'iStep '. Parameters verification (markers and compatibilitv).

" Step 3. Simulation definition at the SIMER!S nackaqe (i.e. declaration of axes,
II functions, selectors, parameters, etc.).
;I

IStep 4. Axes calculations.
II

4.1 CIDETA
icalculation of the ETA axis and its dependencies "

it 4.2 ClRFO *°°+° .° ****° ** * °°°,***.' *I
calculation of the RHO axis and its dependencies; Ii
can be defined in linear or nonlinear mode II

*II II

* II 4.3 CIDTAU °o II
* calculation of the TAU axis and its dependencies; II
* can be defined in propagation or superfluorescence mode * II
*wttttetttqttttttettte*.tttttt*.ttttttetttttttttttt

II 4.4 CIDDWN ***tttt*,SS * ,,,*t* ,,,q,°,°q °.°** °°°°stq ,°°tttot It

It o calculations of the DWN axis and its dependencies; il
* -' " can be defined symmetrically or asymme*trically and II

* can define a Gaussan or a Lorent:ian curve " ti
II *q*. *t~t.q..t...l*t....tt...II

1IStep S. Calculation of the physical quantities used by the simulation.
II II
ii 5.1 CIGAIN
II °computation of the gain in terms of the RHO axis; °

* can be defined constant or Gaussian; can introduce
" disruntions

I I I I

tl i the statistics calculations are non-activated, go to step S.3 IIIt II
5 .Z C1DPHN *q*......q...*°°°'°+°°°°°°°°'°°°°''°°'°°*°~ I

* density calculations in terms of RHO
* used for the normalization of angle PHIO

S. 3 CIEI1X
outline calculations of angles PHIO AND PHI "ii

.... *t ................. ......................

IStep 6. Initializations dealing with pagination.
H' I il

jStep 7. Initialization of angles P410 and PHI1, this initialiqation follows certain I:
laws if the statistical calculation has been activated and can be done through
the C1PHST sub-routine (see figure 6.2.1). I

IStep 3. Initialization and adjustment of vector E0 used for the initiali:ation of
i II field E in the first ETA plane (only if the laser is defined in propagation mode). H

Step 9. Initialization of the principal variables of the program.

Il



FIGURE 6.Z.3 (cont'd)

-Step 13. Cl)RPL ....
* calculation of the last plane produced *

H * and reasons for stoppage, if available. *

Step 14. CIACOH

' calculation of the acoher function; useful
Ssnecially when it is a statistical simulation 6

End of simulation.

;I
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VnI - CONCLUSION

It is noteworthy to state at this point that the functioning part of the system corres-
pands to the packages in section IV and to an ippreciable part of the laser simulation programs
presented in section VI CLRICFS, LR:CFS, LRIPS, LAIP4S, LRlC?, LR1PP). The programs of appli-
cation DEPARM, DESRES and SYNTM are still being developed, however OUPAMM and OESRBS ire
already in use.

In conclusion, it would be of value to review our objectives and to examine how the
software developed for the laser model building project answered our expectations.

With respect to modularity, it is evident at this stage that a considerable effort has
been extended to divide the work into concrete jobs and to limit t!tse different jobs into
procedures or groups of procedures. By their very definition and by their conception, these
packages constitute evident examples of modularity. This modularity can be also found in
the step by step division of the programs of application.

As to !lexibility, there was an effort, all along the conception of the new system, to
*" identify the problems of general concern by liberating us of the specific constraints of the

laser project in order to concentrate on the fundamental aspects of the tasks at hand. It
follows that the softwares thus developed have enough flexibility to be adapted to the diffe-
rent situations arising within the same laser model building project or even to be adapted
to other projects where to results are functions and where there is a sufficient quantity
oi results to justify a data bank..

- . The question of security is more difficult to evaluate. Nevertheless, the use of tech-

niques such as data validation, exhaustive tests during the set up period, etc., increase the
security aspects of the programs. Moreover, splitting up the vork into nodules facilitates
' he inception and set up of the programs and contributes to their strength. Finally, the fact
of using these programs in the context of production makes it easier to test them and to find
their loopholes.

As to efficiency, it is clear that the development of more complex laser models has forced
us to take into consideration of execution time and memory requirements. For instance, the
direct access to the SIMRES and DATSIM files has increased the efficiency of the application
programs and made them more amenable to use in the interactif. Moreover, the use of pagination
in the laser modeling programs has cut down the size of the programs, and facilitates their use
an computer with limited memory.

Much attention was given to transportability in order, on the one hand, to execute certain
laser programs on computers more powerful than those at our disposal, and on other, to use our
auxiliary software in other projects. To make the software more transportable, we have chosen
to write it FCRTRAN IV and to respect the ANSI standard. Moreover, we have isolated in proce-
dures the instructions or nortions of code that are particular to a given environment (like
the files direct access subroutines) thus making it easy to locate what is to be modified in
order to transfer the software to another system.

With respect to documentation finally, we have established and tried to follow a strict
standard for the programs comments. We expect to publish (internal publication) a technical
report and a user's manual for the different packages and the programs dealt with in this
document.

..
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ABSTRACT

A model and results are presented which describe copropagational
coherent pump dynamics aiid evolving superfluorescence (SF). Specification
of certain pump pulse initial conditions results in specific SF characteristics,
as recently observed in CH3F and Ba.
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LIGHT CONTROL BY LIGHT
WITH AN EXAMPLE IN COHERENT PUMP DYNAMICS,

PROPAGATION, TRANSVERSE & DIFFRACTION EFFECTS
IN THREE-LEVEL SUPERFLUORESCENCE

FARRES P. MATTAR*
Mechanical and Aerospace Engineering Department

Polytechnic Institute of New York, Brooklyn, NY 11201, USA
and Spectroscopy Laboratory, Massachusetts Institute of Technology

Cambridge, MA 02139, USA, Telephone: (617) 253-7700

and

C. M. BOWDEN
Research Directorate, U.S. Army Missile Laboratory, U.S. Army

Missile Command, Redstone Arsenal, AL 35898, USA
Telephone: (205) 876-3342

SUMMARY0

Recently developed ccmputational methods~are used to evaluate for
the first time the dynamic longitudinal and transverse reshaping associated
with the concomitant propagation of two light beams in a three-level medium.
Neither the mean field theory [1] nor the adiabatic following [2] or even the
rate equation [3] approximations have simplified this analysis. Instead, the
full Maxwell-Bloch [4,5] equations with phase and diffraction effects [6] included
are solved rigorously, using self-consistent numerical methods [7].

A new concept in nonlinear light matter interactions is introduced:
The results obtained for the first time display the conditions under which
an injected light pulse of a given frequency can be used to shape and control
a second light pulse of a different frequency coupled through the nonlinear
three-level medium. Thus, a specific aspect of the phenomenon of light control
by light is demonstrated [8].

The model has been applied to double coherent transients (i.e., double
self-induced transparency) and to the pump dynamics effects in super-
fluorescence (SF).

The goal of this paper is to illustrate how the output characteristics
of the collective spontaneous emission of the SF pulse [9] (such as delay time,
pulse width, peak intensity, shape, etc.) can be controlled, deterministically,
by appropriately selecting certain initial and boundary conditions for the
injected pump pulse.

* Partially supported by the U.S. Army Research Office, the U. S. Office of

Naval Research, the U.S. Science Foundation and Battelle Columbus Laboratories.
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With the exception of Bowden and Sung [10], all theoretical work has
dealt exclusively with the relaxation process from a prepared state of complete
inversion in a two-level manifold of atomic energy levels, and thus do not
consider the dynamic effects of the pumping process. Yet, all reported
experimental work has utilized optical pumping on a minimum manifold of three
atomic [11-13] or molecular [14-15] energy levels by laser pulse injection into
the nonlinear medium, which subsequently superfluoresces. (Note that the two-
level analysis is only valid for T >> T_, where T is the characteristic SF
time and T is the pump pulse temporal width, and Ras not been realized over
the full range of reported data).

-ftger'-- Bowden and Sung's analytical treatment, we do not confine
our solution to the mean field regime and the linearized short time regime
but have adopted the semiclassical model advanced by Feld and co-authors [16]
where both transients and propagation effects are rigorously studied. Quantum
fluctuations [17-19] are not discussed in the treatment; instead, a classical
uniform (not random) tipping angle concept is used for initiating the polarization
to simulate the fluorescence initiation. The latter method is well-established
for both two- and three-level [20-21] propagation calculations. Since transverse
effects are also considered, the obtained results also extend the pumpless analysis
that previously modelled the Cs experiment [22].

In particular, it is shown that the injected coherent pump initial
characteristics, such as on-axis area, temporal and radial width (and associated
gain-length-Fresnel number), and shape alter the SF pulse characteristics. The
effects of changing the effective gain.[23] of either the SF or the pump
transition and the density of active atoms are also studied.

For sufficiently large effective gain and/or large input pump area, the
two light pulses overlap and the two-phot6n processes (RCR-resonant coherent
Raman) make strong contributions to the mutual pulse development.

Dependencies of this type have been recently observed in methyl fluoride
[24] and in barium [25]. Futhermore, under other conditions, we obtained a SF
pulse of temporal width much less than that of the pump even though the two

*. pulses temporally overlap. This calculation agrees qualitatively with the
results of recent experiments in mode locked CO2 pumped CH3F [26].

4P
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Abstract

Transverse effects on the profile of an intense off-resonant cw light beam, propagating
through a gazeous cell of length Z, are numerically displayed in both cases of the very
small absorption length (a-l -< z ) and the intermediate case (a-l % 1). As predicted by
the theory, self-focusing and spatial ringings are obtained. Moreover for at 'l 1, these
distorsions generally appear as a recurrent process.

Introduction

The profile of a cw light beam with an on-axis input intensity Io was analytically
shown to exhibit unusual distortions when propagating through an off-resonance optically
thick absorber :, such as

at >> 1o/s > , (Case I) (I)

The quantity a - denotes the off-resonance absorption length and Is is the saturation inten-
sity for a homogeneously broadened atom,

2 'T N u Z  T2

A I + 62 T222. (2 )

is = (1 + 2 T2
2 ) / T T 2

Within the framework (1), an approximate treatment of the normalized Maxwell equation for
a cw electric field with envelope e (o ,z)

" -- 1- iST
7-i 72 + 1L(oZ) F ( 2 C (0,z) (3)T+) € (  

2 ))

* displayed the formation of one or several concentric transverse rings of light after some
propagation, either inside the cell or in the free space. Moreover self-focusing was also
predicted for a blue-shifted excitation in spite of strong absorption losses. In Eq. (2), T,
denotes the homogeneous lifetime and 5 is the detuning between the atomic pulsation a and -

the driving field pulsation wo. The undimensionnal variable a is the radial variable r
scaled to the input beam waist ro and Z is -he axial variable z scaled to the diffraction
length,

zu ro 2 k4a)
d c

Partially supported by the US Army Research Office DAAG29-79-C0148; on
extended leave of absence from Polytechnic Institute of New York.4-
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The Fresnel number F for an absorption length is

F d  . (4b)

* It measures the ratio between the diffraction length and the absorption one and it was
shown to be the check parameter for transverse effects in transient phenomena like S.I.T2

and superfluorescence ~.For large F, the loss (or gain) due to the atomic medium prevails
on the diffraction loss while in the oposite case (F < 1) the diffraction losses generally
prevent S.I.T. and superfluorescence 2,

In the present study governed by Eqs.(i) and (3), the balance between the diffraction
and the atomic response, and then the shape of the intensity profile depend not only on F
but also on I/I s and ST2. The analytical treatment just assumes that the beam experiences
two regimes : from the entrance in the cell to a transition abcissa zNL, the diffraction is

* - taken as negligeable (ZNL "c zd). Through the cell, the wave-front undergoes distortions
because of the interplay of nonlinearities and absorption only. It follows that at ZL the
wave-front is encoded, carrying away knowledge of the nonlinearities of the medium. Alter-
wards the driven intensity becomes so weak that the diffraction only causes further dis-
tortions of the beam, like in free space propagation. In summary the encoding of the wave-
front results from the propagation equation

-. F(I - i T2)

1 + I-c(o,z)I /15

for any O< z < ZNL, while self-focusing and multiple ringings arise from the diffraction
equation

,-i 2  
+ ) (,z) c2F¢ - iz) 2 ) C( ,:) , (6)

which describes the distortion of the encoded envelope

1, T a z1-!. O-(Z(1-i T2) 2 NL + 0 - ( Is (7)

for any z _ ZNL. The abcissa z which locates the transition between the two regimes was
found to obey approximately ii law

1 Io 8

z L 0 ( . 1) (8)NL- S

that implies

<< F (9)

I s

when using Eq.(4) together with the inequality ZN<< z. Actually, Ineq.(9) is only a
necessary condition for the diffraczion to be ne~il .Amoedtidanlss hce
that, near resonance, a sufficient condition for the diffraction to be negligible is

(1o )3 << F 2 )( T2  1. i (10)

This latter condition can be generalized to large detur.ings, such as

10 (3 ) F( T > 1) . (0.. "2 .o ) F ( (11 > L) < ])

Is

In "his paper we first present the results of a numerical simulation which confirm the
validity of the theoretical model (case i). In a next section we extend our numerical study
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to the case of weaker absorber, such as

at %K 1o/i s 1%, I (Case I1) , (12)

* for which there is presently no available analytical model. For such media the numerical
calculations display the formation of several rings inside the cell for sufficiently large

* values of either F or ST Experents realized by Gibbs and Rushford * in the conditions
(12) for some 6T as higRer as 103, 0 and small F -. 0.15 exhibited many transverse
ringings. They witl be discussed in details elsewhere.

Case I (at> 1 0/i s >> 1)

In t-his section we compare the analytical calculations (Eqs.(S)-(7)) performed within
the framework defined by Ineqs. (1) and (11) with the numerical solution of the field ampli-
tude which obeys the full reduced Maxwell equation (2).

The input cross-section will be assumed to be gaussian. Both analytical and numerical
transverse shapes of the intensity are plotted on Fig. 1 as the beam propagates, first
inside the vapor cell (0 1 z i Z - 0.03) and next in the free space to ten times the cell
length. The parameters Io/I s - 2. 3 1 ' 8T - +5 , at - 4 and F - 29.3 have been chosen
in order to satisfy the conditions (1) ani (11). Fig. I displays the good agreement between
the analytical profile (broken lines) with the numerical one (full lines). Let us notice
that the ringings take form after the transition point ZNL = 0.025 cm, and even only outside
the cell. For z larger than the diffraction length the numerical solution exhibits a sub-
structure of ringings for the two lateral large rings.

l (r,z)l/s5
...- Analytical x2.31
- Numerical x025

.0..

iao7?

0.07

*0.0032 ,'
0.135

Z o'.2t.5

Figure 1. Transverse reshaping I /I - 2.31, at 4, 6 T2  + + 5, zd - 0.22 cm, F - 29.5,
Z - 0.03 cm, ZNL = 0.25 cm.

In Fig. 2 the parameters are the same as in Fig. 1 except for F - 8.8 . In this latter
case, the inequality (11) is not satisfied. This explains why the analytical curves do not
fit the numerical on At ZNL the theoretical profile exhibits a narrowin of the beam
fit the mnueicale oes. t 5  hetertcadrflehbte a rrowin ofhe b ei" wast ofmagniude f oer I./ resulting from the nonlinear absotonwie e

numerical profile exhibits defocus~ngOdue to the diffraction. This discrepancy between the
two descriptions clearly shows that the diffraction strongly works before ZNL. The encodi.g
model is no more valid. Fig. 3 illustrates the behaviour of the cn-axis intensity as a
function of z for z " ZNL, with the same parameters as in Fig. I and Fig. 2, respectively.
For large F, the analytical curve given by the squared-modulus solution of Eq.(S) agrees

*- with the numerical one deduced from Eq.(3) , that confirms the validity of the encoding
approach. For smaller F, as yet pointed out in Fia. 2, the diffraction cannot be neglected.

Fig. 4 displays the propagation for smaller Fresnel number, F - 1 .25 where the analyti-
* cal treatment does not hold in any case. The parameters Ic/Is, sT2  and xz are those
*. of Fig. 2 but the absorption length (together with the cell lenath) s seven times larger

than in Fig. 2 or the dif:raction length is seven times smaller in Fig. 4 than in Fig. 2.
The beam widely defocuses since the very beginning of the cell and the ringings appear
inside the cell, even for penetration smaller than z,.. Let us point out that even though



1 36 9 u±
strong diffraction effects, the nonlinearities of t-he medium still work to give rise to
ringings.

Analytical /2.31
- Numerical

xaw2.31 -Analytical

z, 2 I3 at°L t 29.3

"'Figure "2 s i-n Fig. reshaping sm parameters Figure 3 .Onaxis--ntn~sty as -a funmc-
as i Fi. I excpt - .8,tion of z. The full lines

"" - c.mor, ZN .8c/correspond to the analytical
,... treatment and the dotted lines

Sto the numerical integration

~of Eq.(5) with F = 29.5 andmaF 8.8, respectively.

I(r,z)/l5 Ax2.31

0. 000064

Figure 4. Transverse reshaping, same parameters as in Figs . Oand 2, except F a 1.25,
1 0.7 cm, zXL 0.6 cm.

Case II (at Io/1 s  1)

The case treated In this section is quite different from the situation encountered in
~th. previous section. In t.e present situation, the Fresnel number, F = 2ZA, is of magni-tude of order the cell Fresnel number, = z /z, which generally does nc exceed some

units, for propagation of visible light in celEs with reasonable lengths. From another hand,
if an encoding of the beam was feasible, a strong non linear phase modification would be
expected only for Large values of the produce of (-Io'Is) by 3T2  see Eq. (7) 3. The con.-unc-
tion of the hree relations

S I , iT2  , F ' I I

"*
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imolies that the condition for encoding (Eq. (12) } cannot be realized. The encoding of the
beam before zNL would be viewed for very large af (F B i Vr).

Moreover the present case is still different from the situation for which analytical
treatment of self-focusing was made (at << I,/I s << 1) S. In this latter casT, the condi-
tion I-/I I allows to approximate the trm (1+ 1 (u/f ) C (z,r) 2/I ) in the
right hand member of Eq. (2) by (1 - (u/) C (z,r) I /I s  and then to relate self-
focusing to a cubic index '.

Up to now, no analytical treatment is attempted in the conditions ( 13). Only a
computer-simulation appears presently to turn out the transverse effects. The figures
(5- 9) exhibit some features of the distortion of an input gaussian profile as a blue
shifted light beam through the gas and then through the vacuum. Fig. 5 displays a quasi

l/Is l

S3.9 '""301

. "5.

(1 010 d f s

C

. 0/.7 1 0 5 10 is loll s  20
Flours 5. Intensity profile. I /I. 2.31 Figure 6. Number of on-axis maxima as a

at 2, 3T 2  -60, z d'0.22 cm, function of 1 0/1., for same parame-
F -2.9, 4 0.15 cm." ters as in Fi.5 , and for different

T2  a) -60, b) -120, c) -250,
d) -500.

periodicity of the transverse patterns exhibiting self-focusing followed by ringings. This
recurrence results from the variation of the factor ( I ( / ) +e(z,r) 2 /I )-1, which
alternatively behaves either like (1 - 1(u/I) r (z,r) 12 /Is ) for small inteRsities or
(I_/ ) }(z,r)!) near the focus. When the driven intensity I(z,r)/I is much smaller
thin unity, the gas behaves like a cubic medium, giving rise to self-lensina. This self-
focusing causes so large I(z,r) / I s that (1 u// ) C (z,r) 2 /1s )-/ practically
vanishes, giving rise to ringngs (Case 1), and so on . Fig. 6 exhibits the
number of the successive foci corresponding to the recurrent lensing phenomenom, for given
L, and 3-l, as a function of I/Is . and for different atomic densities. The two regimes
for small or strong input intensities are clearly differentiated. The figures 7 and 8
display the variation of the maximum intensity I(z4) /IO  and its location z. as a func-
tion of I /Is , for same parameters as Fig. 7. Let us notice that, as a result 8f the

" absorptioR or the diffraction losses, the absolute maximum is located at the first focus.
For Io/s smaller than unity, the magnitude of z* strongly decreases as Io/Is increases ,
reaches a minimum for Io/s smaller or of order unity and then slowly increases with

- The numerical analysis also shows that ringings appear inside a cell with i , I if
the product F iT2  is high enough, ii, Fig. 5 with a large F ('. 3) and 'T . -60, and

* in Fig. 9 with a small F (. 0.L) and larqer !T, - - 1200 . The case of Fig. 9 was
thoroughly studied in relationship with experiments of Gibbs and Rushford and will be
published elsewhere. Let us only point out that the ringings disappear for large pene-

* 4
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10

Z f

so b U Sb.

a c

0o 10 is 0/ 20 0 5 10 15~ 20

Figure 7. On-axis intensity at the focus as Figure 8. First focus as a function of
a function of 10/I for same I_/I for same parameters as
parameters as in F1g. 6. i Fgs. 6 and 7.

x 2.31

x7%7

5 3.8

".* 7 6.3 o10 r °'0 2)

Figure 9. Transverse reshaping and on-axis intensity. Zo/I s a 2.31, a - ST -1200,
zd - 1.26 cm, F = 0.14, 4 - 10 cm.

tration. The behaviour of the patterns for large z seems to make possible the filamentation
of the beam. Self-trapping in the unusual conditions of Case II will be also discussed
elsewhere.
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Coherent pump dynamics, propagation, transverse, and diffraction effects
in three-level superfluorescence and Qntrol of light by light
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A model is presented for the dynamical evolution of superfluorescence from an optically
f.ix pumped three-level system. The full propagation, transverse, and diffraction effects are tak-

en into account. With the use of a previously developed algorithm, a computational simula-
ni" I tion was constructed from this model and results are presented and discussed. In particular,

j,! it is shown that the injected coherent pump-pulse initial characteristics, such as on-axis
-area, temporal and radial width and shape, can have significant deterministic effects on the

superfluorescent pulse delay time, peak intensity, temporal width, and shape. Thus, by
fspecifying certain initial propertics of the injected pumnp pulse, the superfluorescent pulse

can be shaped and altered. The results predict the conditions under which ad injected fight
pulse of a given frequency can be used to generate, shape, and control a second light pulse of
a different frequency via a noninear medium, thus demonstrating a new aspect of the

.1 p nenon of light control by light.

j ) L LNY ODUCrION nwge of reported data. 3

21. . |In this paper, we present calculationa! results and
Superflutrescence' is the phenomenon whereby a analysis for the effects of coherent pump dynamics,

colleciou of atoms or molecules is prepared initially propagation, transvm, and diffraction effects on
in a state of complete inversion and then allowed to SF emission from an optically pumped three-level
undergo relaxation by collective, spontaneous decay. system. The full, nonlinear, copropagational aspects
Since Dicke's initial work,2 there has been a of the injected pump pulse, together with the SF

51 preponderance of theoretical and experimental work which evolves, are explicitly treated in the calcula-
dealing with this process.' tion. Not only do our results relate strongly to pre-

6 With the exteption of the more recent work of vios calculations and experimental results in SF,, Bowden and Swg.' all theoretical treatments have but we introduce and demonstrate a new concept in

I dealt exclusively with the relaxation process from a nonlinear light-matter interactions, which we call
prepared states of complete inversion in a two-level light control by light. We show how characteristics
manifold of atomic energy levels and thus" donot of the SF can be controlled by specifying certain
consider the dynamical effects of the pumping pro- characteristics of the injection pulse in the regime

10 cess. Yet, all reported experimental work: - O has r, > i
utilized optical pumping on a minimum manifold of In Sec. IT, the model upon which the calculaticn

..three atomic or molecular energy levels by laser is based is presented, and the algorithm used in the
pulse injection into the nonlinear medium, which simulation is outlined. Results of the calculation are

4A subsequently superfluoresces. presented and discussed in See. I1. Section IV is
It was pointed out by Bowden and Sung' that for used to summarize the results and cite implications

a system otherwise satisfying the conditions for su- and to discuss future work.
perfluorescent (SF) emission, unless the charactens-
tic super-radiance timel rt is much greater than the I. MODEL FOR THREE-LEVEL
pump-pulse temporal duration rp, i.e., ,j >>r,, the SUPERFLUORESCENCE
process of coherent optical pwnping on a three-level
system can have dramatic effects on the SF. This is The model upon which the calculation is baed is

* a condition which has not been realized over the full comptsed of a collection of identical three-level

27 345 01913 The American Physical Society
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atoms, each having the energy-level scheme shown ter. The initial condition is chosen consistent with
in Fig. 1. The 1-...3 transition is induced by a the particular choice of 0o (see the Appendix) with
coherent electromagnetic field injection pulse of fre- nearly all the population in the ground state and the

- quency wo nearly tuned to the indicat transition. initial values of the other atomic variables chosen
The properties of this pumping pulse are specified consistently 4"12 according to the initial equilibrium
initially in terms of the initial and boundary condi- properties of the system.13 The full statistical treat-
tions. The transition 34,02 evolves by spontaneous meat of the quantum initiation process with result-
emission at frequency (a. It is aswed that the ing temporal fluctuations will be presented in a ft-
energy-level spacing is such that e 3 > >>e so that ture development. Thus, the results presented here
the fields at frequencies o 0 and a cm be treated by are to be regarded as expectation values or ensemble
separate wave equations. The energy levels 2.,-.1 are averages.
not coupled radiatively due to parity cosideratiots. We use the electric-dipole and rotating-wave ap-

Further, we neglect spontaneous relaxation in. the proximations and couple the atomic dipole moments
3-1 transition, and spontaneous relaxation in the to classical field amplitudes which are determined
3-*2 transition is simulated by the choie of a small, from Maxwell's equations. The Hamiltonian which
but nonzero, initial transverse polarization" charac- describes the field-matter interaction for this system
terized by the parameter c I - . Our result do comprising N atoms' is
not depend upon nominal variations of this parame-

( 3.V , = ' ' ,e,,R(,_ -..7. [d IYx3fC XP[-i6Wt-Z-. n ) * e.,X [i(,t-i'. )]l

(21

"p.p t

--The first term on the right-hand side (rhs) of Eq. and too. It is assumed that the electromagnetic field
(2.1) is the free atomic system Hamiltonian with amplitudes vary insignificantly over the atomic di-
atomic level spacings ey, r= 1,2,3; j - ,2,... , N. mensions and that all of the atoms remain fixed dur-
The second term on the rhs describes the interaction ing the time frame of the dynamical evolution of the
of the atomic system with the fluorewence field as- system.
sociated with the 3..2 transition, whereas the last The atomic variables in (2.1) are the canonical
term on the right in (2.1) describes the interaction operators' RV which obey the Lie algebra defined
between the atomic system and the coherent pump- by the commutation rules"" '

1
6

ing field. The fluorescence field and the pumping
field have amplitudes nl'lP and &43, respectively, in [Rm),,Ri] ]R j8 .- R. 5A8, (2.2)
terms of Rabi frequency, at the position of the jth where i,j= 1,2,3; m,n= 1., .... N. The Rabi rates
atom, ?j.The respective wave vectors of the two n(i) and (OW1 are given in terms of the electric field
fields are k and ko, and the carrier frequencies are w amplitudes Eli' and EW , respectively, and the ma-

trix elements of the transition dipole moments n
S and uYby

~ fl"' * (2..3a)

k. " l o ,(2.3b)

* • where we have considered only one linear polariza-
tion for the two fields and propagation in the posi-
tive z direction.

It is convenient to canonically transform (2.1) to

e, remove the rapid time variations at the carrier fre-
quencies (o and wo and the rapid spatial variations

FIG. 1. Model three-level ionic system and elere due to the wave vectors k and ko. We assume that
field tunings under consideration. For the results report- the field envelopes Wl/ and w l va 7 much more
ed here, the injected pulse is tuned to the 1--3 transition, slowly than the periods ( -t and w10 , respectively.

In the transformed representation, we are thus deal-

6J
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In th ing with slowly varying field amplitudes ana atomic where

Soperators. The desired unitary transformation U,
-I the such that - (2.6,0

S..:Osm ."U~"g (2.64)
num Tns-(24r:e" t m ' i, b ()=[(ao-,)t-(k'o-k )-qJ • .6b)
st-is given by

fuh U(t)I f exp~i)(t)R f ] expfi4!(t)RY] If(2.5) is applied to (2.1) and the commutation rules
here ' 3(2.2) are used, we get for the canonically
mble (2-5) transformed Hardltonian ,'r,

il.d j- J J- 2 J-1

(2.7)

where

A t 1 e -o, 8P=e +a-0o, e=0. (2.8)

The equations of motion for the atomic variables are calculated from (2.7) according to

(2.9).

(2j) By imposing the canonical transformation defined by (2.5) we, in fact, transformed to a slowly varying opera-
Star representation which is consistent with the slowly varying envelope approximation to be imposed later on in

the Maxwell's equations coupled to the hierarchy of first-order equations (2.9).
W eld If (2.7) is used in (2.9), the following hierarchy of coupled nonlinear equations of motion is obtained for the

di- atomic variables:
dui. "jR rAV."the 2='( Jx -,. ")A ) -LWl V?, ''W ) t 3) - 1( 3R 33)),"-- -- T R 1"1"e f -- II -- 3,,(2.lOa)

(2.10b)l. cal

" -(-w VI) R +T ( e3 (It+e-A(N) , (2.10c)

1i.id R = 0 (PR V *' (R W W ' ZLWR R ) W2 yRV)(21d

1eld '13)(2.10f)

In Eqs. (210), we have added phenomenological re- where U(4, Vu, and Wk: are real variables, and

laxation .11 and dephasing y1 and taken these to be Uu=- UM, Vk- V,
a uniorm. e., the same parameters for each transi-
tion. for the diagonal terms R the equilibrium g ='i" (2.llc)
values ae designed a.. Rj*', the same for all atoms. wit -Xo+iYo (2.1 ld)

.3b) We shall treat the Eqs. (2.10) from this point as
I c-number equations, i.e., expectation values. Fur- where X, Y, Xo, and Y0 are real variables.

-za- ther, we assume that all the atoms have identical If the transformation (2.11) is applied to (2.10),
energy-level structure and also, we drop the atomic the resulting equations of motion for the real vari-
labels j, so it is taken impli,"tly that the atomic and ables I Wk, Uj, V" j are

to field variables depend upon , ie spacial coordinates • =ei ,V3 -XU YV
Ire- x, y, and z, as well as the time t.

It is convenient to introduce a new set of real vani-
ables in terms of the old ones. We let

* 0re ..Wu--R -Ri,, k>l (2lla) W3 2 -- XUn-YVn -TXoUt-YoV.i

ely.

al u.(u uk l(.ib -1(n-W 21b

' " -"" - b-- -""I . - - iii l illIl lilk mk~l mi
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ized radial coordinate p=mr/rp, where r is the radial., O'n&32 +S Yn +XT' 2-T(Xo U2- ro V1 )
.. +distance and re is a characteristic spatial width. In

S-u , (2.12c) (2.14), 7C, =zgr.a,, where gff.e, is the on-axis effec-
.. • ,tire gain

v32  -8U2- T3YW +++(XoV2, + YoU 2 )

• -Y( (2.12d) h z IJ

" 3 1 -- AV3 1-(Xu+zrVi)+XoW, T , (2.15)

"-(2.12e) where N is the atomic number density (assumed

31 +AU 31-(XV 2I-YU21)YoW 31 -longitudinally homogeneous), and n is the index of
refraction assumed identical for each transition

-JV31, (2.12f) wavelength. The quantity
0~~~~21--8V21 +4 -&L=t]31 - Md'1)  =Nr)(.

+T(XoU3z-Yo V3)-Y iU , (2.12g) No

v-i,2:==+ 8 + +(XVj + ) governs the relative radial population density distri-
bution for active atoms. This could have variation,

-(X 0 Vn+Y0 U32 )-rV 2 . (2.12h) say, for an atomic beam. Equations (2.14) are writ-
" ten in the retarded time T" frame where
In obtaining Eqs. (2.12), we have made use of the .

invariant trRI , --1/C.

faR(e+R+R!ti. (2.13) From this point on, the dot in Eqs. (2.12) is taken to
ibe 8/r. Finally, the first factors on the first terms

It is noted that 1-0 is satisfied identicaUy in on the lIhs in (2.14) are the reciprocals of the "gain-
"1(2.100-42.10c) for -,1- 0 . For Y,11:0, the condi- length" Fresnel numbers defined by

* :tion (2.13) together with (2.10a)-(2.10c) constitutes
the statement of conservation of atomic density, i.e., 21(r.)

particle number. j'P, -a (2.17)

Equations (2.12) are coupled to Maxwell's aqua-
tions through the polarizations associated with each
transition field. It is easily determined that the It is seen from (2.14) that for sufficiently large
Maxwell's equations in dimensionless form in the Fresnel number .7 the corrections due to transverse

rotating-wave and slowly varying envelope approxi- efects become negligible. The gain-length Fresne

mations can be written in the following form: numbers 5r are related to the usual Fresnel numbers

1F-2iri/AL, where L is the length of the medium,

,:.'. , 'F- fL , MIS1)

- (2.144 i.e., the total gins of the medium. In the computa-

aU tiotis, diffraction is explicitly taken into account by
.- IV -+=d y the boundary condition that p-p. corresponds to

r; 3% completely absorbing walls.
(2.14b) The initial conditions are chosen to establish a

where the variables , , 2Y, Yo are the same small, but nonzero transverse polarization for the
those defined in (2.1 Ic) and (2.l d), but in units of 34--2 transition with almost the entire population in

riy . In the above equations, we have assumed the ground state. This requires the specification of

cylindrical symmetry, thus two small dimensionless parameters e- 10- for the
ground-state initial population deficit, and 8- 10- 3

v~- 1  a 1for the tipping angle for the initial transverse polari-
..-- p • Ization for the 3.--2 transition. The derivation for

p p the initial values for the various matrix elements is

_ The first term on the left-hand side in (2.14 a) and presented in the Appendix, and the results are given
(2.14b) accounts for transverse effects with normal- by (A22), (A23), and (A28)-(A33).
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IlL CALCULATION RESULTS AND ANALYSIS 4A
-B ok th . "fIn 17 a n i a s

_ i effec- ~ Calulational methods developed earlier 7 and dis-

cussed elsewhere"l" were applied to the model a
pIesented in Se. I to compute the effects on SF
pulse evolution for various initial conditions for theS
injected (pump) pulse. The results presented here I a

(2.13) demonstrate many facets of the control and shaping
of the SF signal by control of the input signal initial
cacescum.ed The material parameters chosen for -,

id.wel of these calculations are arbitrary, but correspond
'-isition roughly to those for optically pumped metal vapors

in the regime r > -".
Thius, although the simulation inherently yields am.

numerically accurate results for particular exper- FIG. 2. Radially integrated normalized intensity pm.
(2.6)mental design, the results reported here must be tak- files for the SF and injected pulse at zamS.3-czn penetn-

a s qualitative. Our main purpose here is to tion depth for three different values for the initial on-axis
distri- demonstrate and analyze specific correlations be- injection pulse are &,. The SF pulses are indicated by a,

'iation, tween the initial and boundary conditions associated b, and c., wherms the corresponding injected pump pulses
e ' writ- with the injected pump pulse and characteristics of are labeled A, B, and C The injected pulses are initially

the SF pulse which evolve. In many of the cases Gaussian in P and r with widths (FWHM) r--0.24 cm
which follow, rules are established through the and -, respec vely. The level spacings are such

*" analysis, which can be used to predict quantitative that (ei-)/(EJ-Z)M 126.6. The effective gain for the
ke to results for any particular experimental conditions. pump uansition g,= 17 cm' and that for the SF transi-
terms Our choice of particular initial and boundary condi- tion ,-291.7 cm- 1. The azn-length Frenel numbers

damgain- o has beet motivated in pat by processes which for the two trasitions ara 7, 168W0 and Y,,-227L
may have been operative in experiments which have The relaxation and dephasing times are taken as identical
been reported and"in part by the feasibility of for all transition and are given as r, = i, usec and
experimental selection or specification. In connec- Tz -70 sec, respectively. The injected pulse initial on-

-(27) tion with the latter, we demonstrate the control of
one light signal by another via a nonlinear medium,

-- thus imparting nonlinear information transfer and specified in the Appendix. These initial conditions
large pulse shaping of the SF from specific initial and are uniform for the atomic medium and are the
ere boundary conditions associated with the pump injec- same for all results reported here. Notice that we
nel tion signal. have neglected spontaneous relaxation in the pump

nbers Figure 2 shows results of the numerical calcula- transition 1i--3 relative to the SF transition 34-.2.
ium, tion for the tramamese integrated intensity profiles This is justified owing to our choice of relative oscil-

for the copropagating SF and injected pulses at a lator strengths (see Fig. 2 caption).
penetration depth of z-5.3 cm in the nonlinear These results clearly indicate the coherence effect

2.18) medium. These profiles correspond to what would of the initial pump-pulse area on the SF signal
)uta- be observed with a wide aperture, fast, energy detec- which evolves. Notice that the peak intensity of the
it- ytor. The pumping pulses are labeled by capital SF pulses ineses monatonically with initial on-

1t by letters, and the corresponding SF pulses are labeled axis area for the pump pulse. This is caused by
Is to by the corresponding lower case letters. Each set of self-focusing due to transverse coupling and propa-
Sacurves represents a different initial on-axis area for gation. For instance, a 2r-injection pulse would
he the pump pulse, i.e., curve A is the reshaped pump generate a very small SF response compared to an
the pulse at z--5.3 cm which had its initial on-axis area. initial wr.injection pulse for these conditions at rla-

'in specified as 89 ,-u, and curve a is the resulting SF tively small penetration ,. or for the corresponding
a of pulse which has evolved. All other parameters are case in one spatial dimension. Even so, the peak SF

the identical for each see of pulses. The initial condi- intensity is approximately proportional to the square
tion for the atomic medium is that nearly all the of the pump-pulse initial on-axis area, whereas the
population is in the ground state el at 'm 0, and a delay time -D between the pump-pulse peak and the

for small, but nonzero macroscopic polarization exists corresponding SF pulse peak is very nearly inversely
43 is between levels e3 and e2. These two conditions are proportional to the input pulse area. The temporal
-vCn specified by two parameters e and 8, respectively, SF pulse width at ful width at half maximum

and we have chosen -em l0-3 self-consistently as (FWHM) r, is approximately invariant with respect
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to the injection pulse area.
Since the average values of ro and the peak SF in-

tisity are important quantities for interpreting ex-
perimental results with theories 9f ;SF",:4, the

manrin which the pump-pulse coherenc and ini-
tial on-axis area affects these quantities is see to be fo
of extreme importance in any analysis. 2

Fgure 3shosthefcuonth SFpulse of
variation in the ustitial temporal width at half max-________
ium intensity for the pumping pulse. As the ini- i 4 i

* - tial temporal width of the injected pulse r, becomes
smaller, the SF delay time irD increases, whereas the FIG. 4. Delay time ra of the SF peak intensity fom

*peak SIF intensity decreases, and the SF temporal the corresponding pump-pulse peak intensity vs the
* widthri, remains very closely ilixed, pump-pulse initial full temporal width at half maximum

It is clear from these results that theme exist an intensity T, according to ig. 3.
approximate linear relationship between the time de-
lay -rp, betweent the peak SF intensity and the corrn-
sponin pump-pulse intensity and the initial temn- 2T2poral width roof the pump pulse. f~n(3.2)

* This linear relationship is shown in Fig. 4, where
the time delay To is plotted versus the corresponding is the characteristic superfiuorescence time,' and
pump-pulse initial temporal width, from Fig. 3. #0 is a parameter adjusted to give a best fit to the
These results generate the following empirical for- calculational results. For the case treated here,

* - mulaforrp as afunction ofr, r -41 psec, T2 -70 asec, and 00=10O', and the
Fresne number F- 1.47.

* - DO. 3 ST~~( 4 w,)]The relation (3.1) is at teast in qualitative agree-
4 t rjAyh/47-I)r, (3.1) ment with the analytical prediction made in Ref.

where~4(b), Eq. (5.1), based upon mean-field theory. The
wher" rut te in(3.1) was chosen to conform with the

quantum-mechanical SF initiation result 3 ' The
quantity #0 can be interpreted as the "effective tip.
ping angle" for an equivalent ir-initial impulse exci-

ttoLfor r,_O, which initiates subsequent su-
a ~It isto be noted that the value for

*~is dependent upon our choice of 8 (see the Ap-
pendix); however, rD varies less than 25% for

1 ' order-of-Llagnmwde changes in 6 for 18 1 < 10~
t The choicof 81 is simply an artificial way of insiti-

gating the suniclassical numerical calculation, and
US - . A treasonable variations in its value do not strongly al-

1.6 - fect the results. The physical parameter is, then, #0,
which, interpreted on the basis of (3.1), is generated

as through the dynamics caused by the pumping pro-
cm and represents quantum SF initiation. The full

MAW ~ - statistical treatment for three-level superfluorescence
710.. Radlllyintgraed ormlizd itemty ro- with pump dynamics included will be presented in

*files for the SF and injected pulse at z- 5.3-cm peaetra- anoter publicatioLu
don depth for ive different value for the initial temporal These results emphasize the importance of the ii-
width of the injected pulse. The initial on-axsa area of the tiating pulse characteristics in SF pulse evolution,
injected pulse is Oj,-i, uad the pump transition and SF and the effect of SF pulse narrowing with approxi-[efffective gain are g,-1 7.5 cm-1 and g,-641.7 cmn'. mate pulse shape invariance by increasing the initial

rpectively. All other parameters except for the Frenel temporal width of the injected pulse. It is em-
numbers arn the same as those (or Fig. L. The injected phasized that all other parameters, including the ini-

* pulse initial temporal widths at half maximum are (A) tial value for the injected pulse on-axis area are
rp 4 nws, (B) r, =3.3 nsec, (C) rp L9 nsec, CD) fv 2 .5 identical among these sets of curves.
nse,. and (E) i~L2 nc.The initial radial width ro of the injected pulse
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was varied and the effect upon the SF pulse evolu- specified by.7, is given by
tics is shown in Fig. 5. There is clearly indicated an
optimum value for Pa for which the SF peak intensi- 9 -. (3.4)
ty is a maximum and the SF temporal width r is a 2
minimum. If the relation (2.8) is used in conjuac- Then, from (2.17),
.on with the values of the parameters given in Fig. &3
S and its caption, it is seew that optimization occurs 'am- (3.5
for a value for the conventional Fresnel number F Ks
for the SF transition , 1. Thus from (2418) and is the effective gain g, to loss , ratio. From the
F, = 1, we have condition (3.3),

ity from ,a ggzoo (3.3) z, (x,'), (3.6)vs the

anifl for the gain-length Fresnel number. Since F,-I!/, i.e., :. is the penetration depth at which the SF
the implication is that Eq. (3.3) gives the penetration peak intensity is a maximum and corresponds to onew depth zm. at which the SF peak intensity reaches a effective diffraction length, as defined by (3.4). Car-
maximum in terms of the ratio .7,/g . Since this rying the one-dimensional analogy one step further,
takes both transvese and diffction explicity into (3.5) used in 12.18) gives

" (3.2) account as well as propagation. this is indeed a pro- 3.7)
found satnent.

Jand Further insight into the implication of (3.3) can be From (3.5) and (3.7) we have exhibited the signifi-
the obtained by considering a one-spacial dimension cance of the Fresnel numbers ._9 and F in terms of

her analogy. If the linear field loss is taken to be entire- diffraction loss, i.e., Y" can be thought of as gain to

d- the ly due to diffraction, then the one-dimensional linear loss ratio, Eq. (3.5), whereas F can correspondingly
k ic corresponding to the two-dimensional case be thought of as the reciprocal of the strength of the

;grin. diffraction loss,Eq. (37).
kd. The effect on SF pulse evolution of variation of
The the initia radial shape of the initiating pulse is
the shown in Fig. 6. The shape parameter v is defined

.The i in terms of the initial condition for the pump trans-
"tip. tion field amplitude l (r):

- -" .ru(3.8)'t Su- -/.

Thus for v=7, the initial amplitude of the injectedK p- pulse is radially Gaussian, whereas for v,=4, it is ra-
.. for- ,4 dially super-Gaussiam We see from the results

premented in Fig. 6 that as the initial radial shape of
-.Sti- "0 the injeted pulse becomes broader, i.e., larger values

L,,nd for v, the peak intensity of the SF pulse generated
becomes larger, and the width r, and delay time 1'D,

0,  ,e. diminish. It is emphasized that all other parame-
d tes, including the initial values for the radial and

F0d temporal widths are invariant among these sets ofI... LI  FIG. 3F. Radially integrated normalized intensity pro- res

film for the SF and injected pulses at z- 5.3-cm penetra- Thus if the initial radial shape of the injected
tion depth for seven different values for the injected pulse

in initial radial width at half maximum r. The initial on- pulse is modulated from one injection to the next,

a axis are 0. of the injection pulse is O.-2; the SF effec- the SF temporal width and delay tine ?D are corre-

tive gain gs758.3 cmr-', and the pump transition e.- spondingly modulated as well as the SF peak inten-

tive gain g,,m 14.6 cm. All other parameters are the sity. Correspondingly, the coherence and initial ra-
" same as for Fig. 2. The initial radial widths at half max- dial shape of the pump pulse cannot, with validity,
,. "imum for the injected pulses are (a) ro-0.57 cm, Vb be ignored in interpretation of SF experiments in

ro0-0.43 cm, (c) ro-0.24 cm, (d) r0-0.18 cm, (e) re-0.15 terms of r, and rD.
cm, (f) ro-O .11 cm, and (g) ro-.09 cm. The core- Whereas the initial on-axis area for the pumping

r ~ spending geometrical Frenwd numbers are (a) F,-8.46, pulse was 8, - 2ir for the results shown in Fig. 6, the

() F,-4.79, (c) F,=!.47, (d) F,=0.85. (e) F,-0.57, (1) identical conditions and parameters were imposed,
F, -0.35., and (g) F, -0.21. but the initial on-axis pump-pulse area was changed
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FIG. Radially integrated noreelized inteity pro. FIG. . Radially integrated normalized intensity pro.
file for the SIF ad injected pul at imS.3.cm- les for the SF and injected pulses at z-3.cm pemtr.

" penetration depth for four diffenmt values for the injected .on depth for two different values for the injected pls
-.- initial radial shape parameter v (sm tt). The ini- initial temporal shape parameter w (see text), The initial

.el on-axis are 9, of the wjeted pulse is P-2r, and o are O of the injected pulse is Op.2., and the SF
the SP effective gain g,-75.3 cm - 1, wherou the effec- effective pin &-641.7 cni - t. All other parameters an
tive pin for the pump trasition aSp -14.6 cm- '. All oth- the same as for Fig. 5(c). The initial radial shape pame-
e iParlmeters are the same as for Fig. 2. The intial radi. the injected pulses are (A) a=2 and (B) vi4
al shspe *prameters for the injected pulses an (A) v-I1,
(B) v ,m, (C) v-3, and (D) v,

.- s to O -- 3wr, and the rets are shows in Fig. 7. It is Gaussian initial temporal shape for the pump pulse,

see that the major effect of chaning the identified by the temporal shape parame r=2
on-axis area fromt 2ir to 3* is to caue mom raiing with that of a super-Gaussian identified by o-4.

in the SF pulses and to modify the pump-pulse tem- As for the radial distribution discussed previously,

pond reshaping as is noted by comparing Fig. 7 with the temporal shape parameter a is defined in terms

Fig. 6. of the initial condition for the pump transition field

The response of SF pulse evolution to changes in amplitude aiR(-),

the initial temporal shape of the injection pulse is w,(')--ait(0)exp[-(r/,)* J. (3.9)
shown in ig. 8, which compares the effect of ah FifAgain, it is seen that the broader initial pump pulse

causes an increase in the peak SF intensity and a
' .reduction in the delay time rD and SF pulse width

Whereas the results of Fig. S correspond to an ini-
tial on-axis area O, = 2r for the pump pulse, the re-

*- . suits of Fig. 9 correspond to identical conditions and
values for the parameters as those for Fig. 8, ezcept

1 Lethat the initial on-axis area for the injection pulse is
O ,= 3r.

The effect of changing the effective gain for the
SF transition g, and hence the relative oscillator
strength between the SF transition and the pump
transition is demonstrated in the results of Figs.

. k- - 10-13. Each of these figures corresponds to a dif-
Im ferent on-axis initial area 9, for the injection pulse.

FIG. 7. Radially integrated normalized intensity pro- Consistent among the entire set of results is that in-
files for the SF and injected pulses at z=$.3-cm penetra- creasing the effective gain g, results in a nearly
tion depth for four different values for the injected pulse linear increase in the SF peak intensity as well as de.
initial radial shape parameter v (see text). The initial on- crease in the delay time rp. Also, the smaller area t

axis ares Op of the injected pulse is pm3ir. All other initiating pulse causes a narrower SF pulse to evolve
tperamesm are the same as for Fig. 6. and with apparently less ringing.

-. - - * --,
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JIM FIG. P .9. Radially integrated normalized intensity pro- FIG. 11. Radially integrated nornialized intensity pmo-
Jstre- film for the SF and injected pulses at z--3.cm penetm- files for the SF and injected pulses at zu.S.3-cm penetra-

pulw tic" depth for two different values for the injected pulse ios depth for three different values for the SF transitioa

nitial initial tempora shape parametw & (see text). The initial effective pin go. The o-axis initial am e, for the inject-.WSF om-axis ame 9, of the injected pulse is ep-3r. All other ed pu is 0,-2r. All ocher parameters are the same as
Sam parameters ae the same as for Fig. . The initial radial for Fig. 10.

shape parameters for the injected pulses are (A) a-2 and

SF' 3 may be due to self-focusing, especially since
the vr" se of the effective gains used in-this-case-ae

Figure 14 shows the effect of variation of the den- quite high. However, the ratio of the temporal
widths ,, FW'AM?, are within 15% of the corre-

-:ussity p of active atoms. The effective pin g, ang sponding inverse ratios of the densities; the same is
are changed proportionally, corresponding to a den- I

"ty variation p. The ratio of the SF inrities is t f with respect to the pump intensity peak. These rn-
1,/I -- =1.76 and It,/I - 2.06; these ratios are larger ihrsett h up nest a hs e

. he corespd ing ; dese ratios suare sts compre qualitatively reasonably well with the
t h e n s o amen-field predictions for SF in two-level systems

(P-e/P,$-1.40 and (o,/o,)'.49. This difference
from the predictions from previous theories of initialypreparedinastateofcompleteinversion' t

A comparison of the effects upon the injection- pulse of variation in oscillator strengths between the

"id a

.l 8 I2." - L a . & a-

' .9 / II I
the / 'I "

-.tor .s 1A --

p IJ
-'i@A Il 28 4WU66 0 2

dif- FIG. 10. Radially integrated normalized intesity pro- .. an &a .0 lag M."

S-se. film for the SP and injected pulses at z-3.3-c t penetra-
in tion depth for three different values for the SF transition FIG. 12. Radially integrated normalized intensity pro-

M5Iy effective gain g,. The on-axis initial am 9, for the inject- fides for the SF and injected pulses at z- 5.3-cm penetra-
-'do-ed pulse is 0, -ir. All other parameters are the same as tion depth for three different valuer for the SF transition
esi those for Fig. 5(c). The SF transition effective gain is (a) effective gain f,. The on-axis initial am 9, for the inject-

8v5e mS25.0 ci', (b) g.-641.7 c-, and (c) gm738.3 ad pulse is 90,3w. All other parameters am the same as
cm-. for Fig. 10.
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Sdept and thraesiffeont valtiues ) a o nStrastiln d et-o ordfeetvle o h Ptasto
* ed tol isS-o.A th u peousew desity as pleivi-madt- faiepi o h pm rn

fo Fig. both tiond g,=7. mo-inaly Exetfrth fstvepn&

given in Fis 5and 16, 1esPec tivel. It is seen that
the raxctv efcts in the pumpqpinse reshaping
are quite dsic.The variatices in oscilator
stngthsFg.15 essentially calsl= 'hole burning" .

-IIse

laz lan

V oo FI.1. Railyitgae nrazditntypo
FI.1. 6.5al nertdnnhditnst r. flsfrteS n njce us tz3-mpnt

atoms.~ ~ ~ ~ ~ ~ ~ ~~~~~~FG Th16ai nta ae pfrd nece us s e .E adiap l inrtheectie nsmand Frmlnumt r-

Op-2. Except for the effective pim ad Fresnel num. bers, the values. for all other parameters are the same as
bers, the values for all other pasaess ane the same as for ,Fig. 5(c). For each set of curves, the gain values are
far Fig. 3(c). For each set of curves. the gain values, are (a) g. =29 1.7 cm- , go, =17.5 cm - ; (bh& w~40S3 cm-,
(bi g,=323.0 cm-', gw26.3 c23'; fg,=641.7 cIZV'. s,=24.5 cm-1; Wc g,-S25.0 cm-1, gow31.3 cmi""; mid
so,=32.1 cm-", and (d) &=75S.3 co"", g,--37.9 Ciii"'. (d) gm641.7 cut"', gwr38.S cm"''. The corresponding
The cormeponding Fresnel numbers am (b) .7,m23 992, Frewnl numibers are (a) .7, -17296 7 -22-7t; (b)
JI,=4100; (c) .7,-31724, 5Y,5010; =d (d) .7,-24212. 57,s.318S; (c) -9',-31 130, Y -4100; and
.7,m37456, ,-S922. (d) _7o, 38048.7, S 0LIM
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in the following edge of the pump pulse, wheras the tions of pump-pulse and SF pulse copropagation and
variation in density, Fig. 16, affects the whole pump interaction via the nonlinear medium. These figures
pulse. This contrast has an analogy as an inhomo- exhibit details of the dynamic mutual pulse reshap-
geneos, Fig. 15, as opposed to a homogeneous, Fig. ing, self-focusing and defocusing during SF buildup.
16, effect on the pump pulse. This effect might be The pulse intensities as functions of the radial
used for the purpose. of pulse shaping under suit- coordinate p and retarded time r are presented in
able conditions. Fpigs. 18 and 19 for two different penetrations z=4.4

Shown in Fig. 17 is the transverse integrated SF cm and z=-S.3 cut, respectively, into the high gain
pulse intensity versus retarded time r (curve 2) to- medium. The injected pulse is initially radially and
gether with the transverse integrated pump-pulse in- temporally Gaussian. Both the pump pulse and the
tensity verus r (curve 1) for a gain and propagation SF pulse are seen to exhibit considerable self-
depth chosen so that the pulses temporally overlap, defocusing with ringing following the main SF peak.
Under thes conditions the two pulses strongly in- At the larger penetration, Fig. 19, a large postpulse
teract with each other via the nonlinear medium, appears in both the pump and SF pulse propagation.
and the two-photon processs (resonant, coherent This is due to energy feedback from the SF to the
Raman-RCR), which transfer populations directly pump transition. The postpulses overlap, and so the
between levels ez and el, make strong contributions two-photon RCR effects are active and quite signifi-
to the mutual pulse development.' The importance cant in the dynamic evolution and coupling between
of the RCR in SF dynamical evolution in an optical- the pump and SF pulses. This effect is due entirely
ly pumped three-level system was pointed out for to the coherence in the dynamical evolution of the
the first time in Ref. 4. Indeed, the SF pulse evolu- system.
tion demonstrated here has greater nonlinearity than Portrayed in Figs. 20 and 21 are isometric repre-
SI in a two-level system which has been prepared sentations for the radial and temporal dependence of
initially by an impulse excitation. What is remark- the copropagating injected and SF pulses for two

able is that this is an example where the SF pulse different initial shape distributions for the pump
temporal width , is much less than the pump width pulse. In the irst case. Fig. 20, the initial temporal
rp even though the two pulses temporally overlap, distribution of the injected pulse is Gaussian,
i.e., the SF process gets started late and terminates whereas the initial radial distribution is character-
early with respect to the pump time duration. ized by the parameter v=3, Eq. (3.8). It is observed
Pulses of this type have been observed" in CO- that the injected pulse has undergone considerable
pumped CH3F. reshaping, due to propagation, to a more Gaussian

The remaining figures are isometric representa- radial distribution, and the SF pulse exhibits strong
self-defocusing in the wings of the tail region. In
the second case, Fig. 21, the initial radial distribu-

4" tion of the injected pulse is Gaussian, whereas the
initial temporal distribution is half-Gaussian, with

as the sharp temporal cutoff on the following temporal
half-section of the pulse. The SF pulse rises ex-
trmnely sharply, in comparison to the other cases

a~ analyzed, and tapers off with strong self-defocusing
u. indicated in the wings of the pulse tail. Pump

pulses of this type are generated using a plasma
switch 0 and the rresponding SF pulses with steep
rise have been obsved.

LU IV. CONCLUSIONS

u4. The effects presented here clearly demonstrate the
coherence and deterministic effects on SF pulse evo-

FIG. 17. Radially integrated intensity profiles, in units lution of injection pump-pulse characteristics and
of Rabi frequency, for the SF (2) and injected pulse (1) at conditions in the regime re < rjt. It is suggested that
a penetration depth of :-5.3 cm. The effective gain for effects of the type discussed here may have in fact
the pump transition and the SF transition are g, -17 been operative in SF experiments and their results
cm - and g,=641.7 car", respectively. The initial on- which were published earlier.3- n0 The pump pulse
axis arm for the injected pulse is e mr. All other param- was taken as purefy coherent in these calculations.
eters ate the same as for Fig. 2. To determine whether or not effects of the nature

L . . . m .y . - . _ .. , _ . . .
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FIG. I. Pulse intunity I as a function of the radial coordinate p and retarded time 1at penetration Z-44 cm. The in-
'.- jected pump pule is in the upper left and the SF pulse, which is generated, is in the lower righL The parametes are the

same astfor Fig. 3(A).

reported here are indeed operative in a given experi- ticula initial characteristics and conditions for the
ment, it is crucial to determine the desee of coher- pumping pulse which is injected into the nonlinear
-ce of the pumping process as well as its temporal medium to initiate SF emission. These manifesta-
du-at.on. tions and others of the same class we call the control

Furthermore, and perhaps of Srea importance of light by light via a nonlinem medium. This
we have demonstrated the control and shaping of phenomenon constitutes a method fob" nonlinear in-

* the SF pulse which evolves by specification of par- formation encoding, or information transfer, from

FIG. 19. Pulse intensity I am a function of the radial coordinate p and retarded time r at penetration z 5.3 cmn. The in-
jeeted pump pulse is in the upper left, and the SF pulse, which is generated, is in the lower railbL The parameters are the
sameas for Ri. I8L
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in-FIG. 20. Pulse intensity I as a function of the radial coordinate p and retarded timer at penetration zm 5.3 cm. The in-
jected pump -ul is in the upper Wet and the SF pulset, which is generated, is in the Iowe r ight. The parameters arm the

saeas for Fig. 14(b) except that the initial on-axs area for the iqnced pump pulse is 0.. 3w and the initial radia shape
parameter is v=3 (see text).

the injection pulse initial characteristics to corre- Work is now in progress to incorporate the effects
- t& sponding SF pulse chaz cteuistics which evolve due of quantum statistics of the SE spontaneou relaxa-

to propagation and intetion in the nonlinear tion process3 1  We are in the process of further
medium.~ determination and analysis of the nonlinear interac-

FIG. 21. Pulse intensity I as a function of the radial coordinate p and retarded time r at penetration z-=5.3 cci. The in.
* jested pump pulse is in the upper left, and the SF pulse, which is generated, is in the lower right. The parameters are the

* . s for Fig. 6(B) except that the initial on-axs arm for the injected pulse is 89,= 3r, and the initial temporal shape of
the injected pulse is half-Gaussian, with the sharp temporal cutoff on the following, iLe., increasing r, side of the pumping

.. U



as well as nonresonantly, interacting by a nonlinear adA istentalfurcnefed piukMedium. n 7 i h nta loecnefedapiue
a-gffy1 , and ic is the linear fluorescence field loss
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The condition (A14) in (AM3 gives

We mumt choose thae Intial conditon sef AT -R . Ae
consistently. We wish to establish a smll bu Using (AIS) and .(A14) to eliminate the field am.
nonzero uniform initial transverse polarization 8 fo plitdAr from Eqs. (AIO)-(A13), we get
the 3.42 transition. For self-consistency, this coffe. * 2-
sponds to initial population depletion # of thea
ground-state population consistent with (2.13) and 1 -~ 1 1 3 , A6

In terms of initial population numberr l'5, (AM.1 3 3 2

W.U-N 3 -N 2 , (Al) CaS)__

*W 31 -N-NI . MA)

*we chos Dividing (AM7 by (AIM),
NJm-. 4, (AM) dRj2  A3 19

dR31 A2,tj
e small and positive and impose the ansatznertig(1)

U32 - sin si#., (A) IneRating (A219)
* ~V32 pif co*I~Jygg(S

and Idwhere the constant of integration has been set equal
* andletto zero Thus

PEl N2 /N3.<l. R.d- (2
*The condition (AM) means essentially that Njuqe 2

and Nm~O. Equations (Al), (A4), and (AS) under In terms of the real variables defined by (2.1llb), and
condition (A6) become using (A21), we get

*n M ein#~, (A) UZI -2Vn, (A22)
V3M8O4(Ag) V21-2U 32 . (A23)

W32meCos .(A9) From the initial conditions (A I)-(A6),
Our uniform initial condition are just the condi- W 2 ocosq - - 1+2#. (A24)

* tdon which led to the linearized mean-fid equa-
tions in the small fluorescence signal regime of Ref. Thus
4, Eqs. (4.140)-(414f). Initially, the pump field co-1(2a - ) ,(A25)
amplitude (ai -0, and these equation of motion be. ~ -

come and

* ,,-a/4R,,(A10) U31 =sinjsin#,=,miisiup , (A26)
An R--2fa4jR3, (All1) V 3 -sin , co#, - tjco#, (A27)

1, - -2kL4R3, (A12) We have, therefore, using WA),



2727 CHERENT PUMP DYNAMCS, PROPAGATION, TRANS VERSE... 359

IM13) (A28) since we Mont Choe the phase #8 such that

W3 1 2u1,sin#,.0. Wehave

U3 -d8sin#.-O. GUM0 V31 cosA, (A33)

V3 .*a co*, -d6, (A31) with qi given by (A25) and #,, chosen straxily.

(A14)
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Superfluorescencc eision proilcs are computced uing one-way coupled Maxwell-Iliocil

equations. transverse effects are included in the full three-spatial-dimension case as well asEl,in the cylindrical-symmetry case. Initiating quantum fluctuations are approximated by a
radam polarixatlon source with a completely random phase and root-mean-square tipping
angle or 2/VNW, wherc N is thc nuaniher or atoms ill each volume element. Thaese fluciua-
dions reduce the tail of the output obtained with transverse effects alone. In fact, the fluc-
tuations in output pulsc shapes encompass. the C& data of Gibbs. Vrehcn. and I-liksporm. C
The standard deviation for the delay time is found to be (12.5 ±4)% for Fresnel number of
0.9 compared willi the vilitc (M-1i 2),Y recently measured by Vrechen and dler Wcduwc. also -.

for Cs. Inliomogeiaeous-broaden i jg effects are also included in some simulations.

1. INTRODUCTION the pulse evolution when thc problem is still lineir.
Miurinag Ilic later nonlinear evolution whe licate nun,- *.

-Previous simulations of superfluorescence, have ber of photons in important modes is large, the
-IJncluded quantum fluctuations" or transverse of. dynamics% can be described a-curately semiclassical-

4et"but never both until recently. This article rc- ly, i.e., with coupled Maxwell-B~loch -equations.
1"rts simultaneous treatment of iboth or these ciects, ']hc quantumn initiation is then descrihed by a %Ia

r-in the presence of inhomogeneous broadening and tistical ensemble of initial conditions for Maxwell-
!valuates their significance. Bloch solutions. One can adopt for each volume elc.

Superfluorescence (SF) is the process by which merit an Initial polarization source with randomt
w:hereat emission occurs rrom an ensemblc of two- phasc 4 and with tipping angle On which is a hivari.

l1evel atoms initially in an inverted state in thc ab- ate Gaussian with rms value 2/VN, where N is the
cc of driving external radiation. The emission number of atoms in a given volume element. There

gins by incoherent spontaneous emission; only the are two experiments that indicate that 00 is about
-*geometry of the inverted medium leads to directed 2/VIN; they show that injected pulses must have in- .. --

.-jmission. The quantum initiation process leads to put pulse areas larger than 00 in order to shorten the
large (=10%) macroscopic fluctuations in the tern- SF delay time. 17,1  Uniform piane-wave Maxwell-

-.,.poral and spatial shapes of the SF pulses emitted by Bloch solutions have been calculated by Haakc ot al.
-4 system of 10' initially inerted atoms. for hundreds of such statistical initial conditions.'
* Recenitly, two groups'Is have studied theoreti- These yield about 12% for the standard deviation
.-aly the quantum initiation of SF, including propa- O(?rD)/?PD in the delay time in good agreement with

gaineffects in the plane-wave approximation. the expression 2-3AnJV derived by Polder et al.'
*Quantum effects occur during the very beginning of Vrehcn and der Weduwc"' havc measured (10 ' Yn

27 1427 M 1983 The American p~hysical Society
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* ~for Presnel number F=0.8, (6±2)% for F=4, and tions have been extended to the more complex cas4

*~.<4 orF 8, where F =irr 2 /AL, r1 is the radius where azimuthal symmetry is absent and two trans-
of the initial inversion density at half maximum, L verse dimensions are required. The latter model hi

is the sample length, and X is the SF wavelength, neededt eciesotsaelnt hs n m
Note that the platie-wavc thleoretical value ol' cu(rl plitudc fluctuations which reusult ill multiple-

* .~.is in good agreement with the F-0.8 experimental transvcrse-modc initiation and lead to multidirec.
vaIlue. I l(wevur, the lack ol'ringing is nUL aCcounted tional output with hot spts This effect is only im,

.. for. One might hope that this would be so in that a portant in samples with Frcsnci numbers of ordei
single-mode plane-wave theory wls, always justified unity or larger, since diffraction singles out
by iiiilg that F-I ha~s wiciugl difl'ractauo l(Ns. to S111LmiIII phlasc I Jolil II iii mll-I samlplus.

favor single-mode emission without introducing ex- The polarization is assumed to be random ini

cessive losses. This article contains the first2 ' 2'" cal- phase relative to the coherent emission which even-
* culutions of SF in which both quantum initiation tually evolves,. The probability P(iu,u) that thil

and transverse effects arc included; we id satisfac- transverse polarizationi has components u* amid v is
*tory agreement with experiment. Inclusion of inho- Gaussian distribution

m ogeneous broadening further improves the agree- I2
Xment. P u, Wdu du=-expf-(u +U)]dd, (

-*~--*..'Ali earlier paper' presented a study of transverse
effects iii supcrfluorescence in the absesice or .statis- where

S ~ * -ties. In those simulations, a one-way-propagating
small-area pulse irradiated a population-inverted 8 <2 /2V 2
mmedium under eonditionis of cyliiidrical symiautry. for thme quanmtunm imii-atiomi lo be. properly rcprcscuit'

7'Within those simplifying assumptions, propagation ed.9,'o"" T[he ang&uliar brackets denote an ensembli
-and cylindrical transverse effects were fully taken avcrage. Equation (2) is easily checked using
* into account. It was found that transverse effects

S.*. couple together tomis in various parts or I lie beam,, U2~ 2~iiO0 (3

Z in so that they tend to emit at the same time and, frsml0 slsuedee;te
hence, largely remove the Altrong ringing so prom-
inent in the plane-wave siMulations. In fact, rather P()0~±c~8d2

* 4.gcxx agreement was rouilil with thu Cs data 23 by b2
- -using simulation densities somewhat higher than the Tepoaiiyta 'i esta 1i

S ~ ~~,. ~measured ones. Also the simulated pulses trailed off Tepoaiiyta 2i esta ~i
* .more slowly than the observed ones. Finally, the .0-06Pr 1d2
* . s~~~imulations predicted large ringing for a small u (2cO I-

detector placed in the centigr of tie Fresnel-number- ~ ~ E.()cnb e qa oI-,weeRi
I (F= I SFoutut.'rh- pimay ojeciveof his random number between 0 and 1. This leads to

-~ ~~'~'paper is to show how the vprious refinements of the
.* propagation model lead to an increasingly accurate /

jitteriptie aod futuios.%cv~lS us hp% eas
descriptio andfluutimeos.c SN pusRhpsdly,

11.2 i'I. APPROXIMATIONS When Lthe population-inverted medium is dividc
* .'i-AND NUMERICAL TECHNIQUES into smaller volume elements, N in Eq.(6) is replace

h by the number of atoms in each volume element, i.e
.*p-~ 2'.The basic assumptions of these calculations are

one-way propagation and initiation by a polarization , 2 r 1/
randomized in a particular way. Previous studies5'2 =_ In"
indicate that interference effects between forward-
and backward-evolving SE pulses are quite insignifi- is the initial tipping angle for the ith volume el

_A-. catfrtesaltpiga-e ~C~i" rid) ment containing N~j atoms. The smaller the volu
usually encountered in experiments. At large 0  element the larger the initial tipping angle andt

4? e -. a (c-10' rad), the interference can reduce the tail by fluctuations for that element, but also the small
* ~ .several percent. their effect.

To reduce the computer costs, the first calcula- The random numbers used in Eq. (7) and in rat
tions described a geometry with cylindrical symme- domizing between 0 and 2~r are obtained from

* -" "--' ~try (one transverse dimension). Subtequent calcula- table of random numbers. The starting addressI

FIR-*17 V.~.~.~. ~~.*~~V~..w-H
j~4 4~ A~ . ~ ~ -~ ~.:L
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the table is changed at the beginning of each run. (C))

The equations of motion are
* a -(F)'29 4ar 2 . (Ra

4. n(8b) 2.,
ri 2  hj

r(ns)
whee ~ ad ~areth slwlyvayin coplx a- FIG. 2. Intensity integrated over the transverse

plitudes of the electrc field and polarization, respec- cylindrical coordinate as a function of time for single tra-
tively; n is the -Inversion density and can initially jectories. (a) Cs data for ng-l.6x 101" cm- 3. (b) Simula-
sustain transverse variations, and. n' its equilibrium tion with transverse effects, but no fluctuations:
value; r-=t -z /c is the retarded time; 1.& is the tran- no S1.2X 100cm-, 00= 1.i7x 10' rad, and Fresnel
sition dipole moment matrix elcment; and T, and number F = 1. Wc-Mf Simuhins with transverse effects
T2 are the population-relaxation and polarization- and fluctuations for nt"-I9.2', 0"c m',.(0f2"
dephasing times. Diffraction is taken into account =1.37 X 10~ rad, and F 1.
by the Laplacian term

* V~~'= l/p(a/p~pa~'/~pThe sionulation paramcters (ecept as nioted) were
-. oresc.-limy tioosc or oi heCssitigle-ptiike exeite,

namely, X=2.931 /,im, L =2 cm, T, =70 ns JT2(32=802a~ nrR8 /nX 2L, -ra551 ns, no= 1.8
(a2/a~+a 2'i8 2 X 101" cm -, and F=t1. The initial gain profile is V

whereGaussian, i.e., n0 (r)=nncxp[-(7/r,) 2 ln2], so the

* ~ rr, =x/r,,, and =l,.spatial width is narrower for smaller F, but the peak '~

~=y/rp. gain remains the same.~-
The boundary conditions are V1 ~ 0 (where 4'

is the electric field) o he axis (P -fl or x -y .-0) 111. SIMULATION RE.SULTS ,

and at P- cc (or x =y = c). Equations (8) are nu- .

merically integrated with V =jtnosin01,exp(i~fin) and A. SIR pulse shapes
n, mnocoMl; 41 is definctl by l~q. (7) and (A(') is uni-
formly randomly distrilinted Ixctwecii0n and 21r. For Figure I is a summation of 14 outputl ptilse-i itt
computational efficiency, thec temporal and radlial the plane-wave case with quantumi rlucttuatios.t
grids are adaptive nonlinear, i.e., nonlinear with The ringing is still very pronounced so quantum . '4
parameters determined hy the computer noting the ~-
evolution of the pulse 26

Q15 -- ~~

B 0.9 -

0 05

001
*0 5 to MS P0 P",',1"

*FIG. 3. Effect of fluctuations on the average pulse
shape. Average over 17 trajectories with fluctuations

FIG1. I. Intensity as a function of time for the average (sclid curve) has a slightly shorter delay and a smaller tail 7.. A

.of 14 output pulses in the plane-wave coase with quantumn than the danhed curve with no fluctuatlions and a uniform
fluctisiations iuch ihni 6( 1.)' .&6) in mil ruid OnuI . I Icre, it' IN. 2110"' cmi 1 ' . 17 'In)

n~l.x1014 CM . rad, a nd P - 0.32
11411S. 1 . 2

k .--- oo
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* the table is changed at the beginning of each run. W . I k I ~
The equations of motion are .

'-.11 -IV e-(a N0 s4 52 54' 1

az X4
T, fi

(90)
7Fr 0' A IsP 11 A8 . I ; A

r(ns).
where............re..he....w.....r..........e.....wher 8'and~ ae te sowlyvaringcomlexam- FIG. 2. Intensity integrated over the transverse ~-*.-

plitudes of the electric field and polarization, respec- cylindrical coordinate as a function of time for single tra-
tively; n is the inifersion density and can initially jectoris. (a) Cs~ data for nRnt7.6x 101" cm-3 . (W Simula-
sustain transverse variations, and n" its equilibrium tion with transverse effects, but no fluctuations.

* value; -r=t -zlc is the retarded time; A is the tran. noo = 18.2x 1010 em-3, O- 1.37x 10" rad, and Fresnel
sition dipole moment matrix element; and T, and number F= 1. (c0-0) Simulations with transversc effects -

T2 are the population-rclaxation and polarization. and fluctuations for noo 18.2 x 101*cm 3(,21/2
dephasing tmsDifatoistknitacon1.7X0 dand F =1.
by the Laplacian term.

r" I P 3B)l4 ,P The simulation parameters (exccpt as noted) wcrc
essentially thnse of the Cs singlc-pulsc cxpcriment,23'

* ?namely, 1=2.931 lpm, L -2 cm, T, =70 ns JT2  .
80 ns,TR)= grro/3n 0,%L,ro = 55 1 ns, ng i0

a~ta~2a2'/a 2 X 1011 cm -3 and F=l1. The initial gain profile is
Gaus.-ian, i.e., nq(P)=noexp-(r/r,) 2ln2J, so the

p~r/P. 4'x/r, andspatial width is narrower for smaller E, but the peak
* ~=Y/'p.gain remais the same. V *

* The boundary condition,. arc f r 0 (where
ithe electric field) on ihc .xis (r -fn or x =y =n') fit. SIMUL.ATION RR.SULTS Jt ''s

and at P-=cc (or x -y = ca). Equations (8) are nu.
merically integrated with 1 ' -=nnsin'expUisf4) and A. SFP pulse shapes
nt mnocos,4; A is defined by IRq. (7) and o') is imi-
formly randomly distributed between () and 21r. For Figure I is a summation of 14 output pulses in
computational effiiny h eprladrda the planc-wavc case with quantum fluctuations.
grids are adaptive nonlinear, i.e., nonlinear with The ringing is still very pronounced so quantum
parameters determined by the computer noting the
evolution of the pulse.2

0.15-

2.,

005

0 t6 2 30 40
0 5 10 1IS Po -5

r (m)
FIG. 3. [flf"Ic of fluctuations on the average pujlse

*shape. Average over 17 trajectories with fluctuations
FIG. 1. Intensity as a function of time for the average (solid curve) has a slightly shorter delay and a smaller tail 'IW

* of 14 output pulses in the plane-wave case with quantum than the dashed curve with no fluctuations and a uniform
fluctuations such that (O,'," 1-.69e0' rad and O6. Here, n)-lS.2xI014 cm-',(0o'"=.37xlO' 4

I .8X O'% m'', rad, and P-0.32.
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* also shows the radially integrated output SF intensi- (~b)

ty as a function of r for the four shots of the sta-r
tistical ensemrble.

B. Delay-time fluctuations 10
.. 0 10 20 3040 0 i 20 30 40

Figure 5(a) is a histogram showing the fluctua-
tions in delay time rD (r- at pulse peak) when quan- -
turn fluctuations are included in the plane-wave ap- .. c d

proximation. These 57 runs yield 10.

rD? )1 05.

,vN-li0 0 20 30 40- 10 20 3.0 40
I i r (6s)0

FIG. 7. Phase waves. I'llbtuations can result in the
-(.9 .3%second pea k exceedi ng the fi rit. n ()= 9. 5x 10O'0 cm. (a)

r-.49, rO~"=.tl- ad; (b) P.1t.49,j;
(6A)'A=l.24X 10-' tad; Wc F-0.165, (0')117= 2 .2 2 t4r

compared with 12% from the formula 2.3/InN de. X 10-4 tad; (d) P=.O. 165, (0m2)1/3 L79x 10-1 rad.
rived by Polder et at.10 and from numerical simula-
tions of a larger number of trajectories..1 3 Figures isrbaldtricdmcbeerhnteero

* 5(b) and 5(c) are similar, histograms for cylindrical- bars would suggest. The curve yields (12±4)% for4
* symmetry transverse simulations for F= I and F_-4.8 compared with (lO±2% reported by VrehcnF

F~ir' resectiely;and der Weduwe for Cs.' Drummond And Eberly
have more "ensivc calculations or a(irjD) - ror

for 3 tajetores nd 7.2±l.8% fr F ir'andFigure 7 illustrates a difficulty encountered in cal-
* 16 trajectories. Figure 6 summarizes the Fresnel. culating a(i-D). Occasionally, the first "peak" is not W

number dependence over the range F=0.3-1.5.. the highest peak. If one uses the second peak r
- The curve is drawn through the points to guide the determining rD for just one trajectory in a set of 10,

eye. Because the same starting point was used in the the value or vir,)) is dominated by that one trajecto-
same random-number table fr the five closed circle ry. Consequently, in Fig. 6, rD is measured to the S'-

* .points, the Fresnel number dependence of a(,rD)/?,D first peak even if it is only an inflection on the lead- -*~ i

*b Sbc'

3 II

0~
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have been calculated by Haake, Haus, King,
1 Schr6der, and Glauber.14 Their results show that i

* * simulations, including both inhomogeneous broaden-
.(a) ing (T;) and fluctuations but ignoring transverse ef-

fects, do not explain the absence of ringing in the Cs
" data. Without fluctuations or transverse cffects, 4.

'I. Fig. 10 shows that T'32 ns as in the Cs data has
little effect on the ringing. Elimination of ringing is
shown in Fig. I I using a T2 almost as short as r Sr.
Figure 12 shows that adding T;=32 ns to the previ-
ous simulations including fluctuations and trans-
verse effects changes the pulse shapes very little.

IV. CONCLUSIONS

9 Ib) The addition of quantum fluctuations in the ini-

tial conditions of SF calculations does not greatly
- C alter the general shape of the total output pulse in- .I.. \ tegrated over the transverse dimension. It does re- ',

* suit in noticeable macroscopic pulsc.shapc fluctua-
,, . , tions similar to those observed. Although fluctim-

tions prevent prediction of a single-shot pulse shape,
by examining many single-shot calculations one

FIG. 12. Transverse effects and inhomogeneous finds that fluctuations reduce the on-axis ringing

* broadening. Parameters: Same as% Vsg . in except that and the tail, on the average, improving the agree-
transverse effects (-0.27) are now considered. Includ- ment with existing Cs data. The standard deviation .

ing T2 in the Cs simulation is seen to be a small refine- in delay time is consistent with the measured value,
ment which does suppress the tall slightly. (a) Relative in- but the uncertainties in both the simulations and ex- " .

tegrated outputs. (b) Normalied integrated outputs with peHments are large. The existing Cs data are en-
peaks shifted to coincide with each other to .impliry compassed by the changes in output pulse shape-
pulse-shape comparisons, calculated including both fluctuations and trans-

verse effects. The plane-wave predictions fail for all

is completely Irregular and highly asymmetrical [see Fresnel numbers, large or small, so the strong ring-

Fig. 9(a) for the energy isometric near the peak of ing computed 22 for small-area pulse propagation in
the output pulse]. This is owing to the loose cou- an inverted medium is not expected in superfluores-
pling between the various portions of the beam as cence.
well os the short-scale nuctuitions. Nevertlicicas.

- 71g. 9(b) shows that the (transversely) integrated
output signals remain smooth, as observed by the

- detector in the experiment. Figure 9(c) compares ACKNOWLEDGMENTS
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